Suppr超能文献

碎片连接的化合物设计。

Compound Design by Fragment-Linking.

机构信息

Evotec (UK) Ltd, 114 Milton Park, Abingdon, OXON, OX14 4SA, UK phone: +44(0)1235 441238.

出版信息

Mol Inform. 2011 Apr 18;30(4):298-306. doi: 10.1002/minf.201000174. Epub 2011 Apr 6.

Abstract

The linking together of two fragment compounds that bind to distinct protein sub-sites can lead to a superadditivity of binding affinities, in which the binding free energy of the linked fragments exceeds the simple sum of the binding energies of individual fragments (linking coefficient E<1). However, a review of the literature shows that such events are relatively rare and, in the majority of the cases, linking coefficients are far from optimal being much greater than 1. It is critical to design a linker that does not disturb the original binding poses of each fragment in order to achieve successful linking. However, such an ideal linker is often difficult to design and even more difficult to actually synthesize. We suggest that the chance of achieving successful fragment linking can be significantly improved by choosing a fragment pair that consists of one fragment that binds by strong H-bonds (or non-classical equivalents) and a second fragment that is more tolerant of changes in binding mode (hydrophobic or vdW binders). We also propose that the fragment molecular orbital (FMO) calculations can be used to analyse the nature of the binding interactions of the fragment hits for the selection of fragments for evolution, merging and linking in order to optimize the chance of success.

摘要

两个片段化合物与不同的蛋白质亚位点结合的连接可以导致结合亲和力的超加性,其中连接片段的结合自由能超过单个片段的结合能量的简单总和(连接系数 E<1)。然而,文献综述表明,这种情况相对较少,在大多数情况下,连接系数远非最佳,远远大于 1。为了实现成功的连接,设计一个不会干扰每个片段原始结合构象的连接子是至关重要的。然而,这样一个理想的连接子往往很难设计,甚至更难实际合成。我们建议,通过选择由一个通过强氢键(或非经典等价物)结合的片段和第二个对结合模式变化更耐受的片段组成的片段对,可以显著提高成功连接片段的机会。我们还提出,片段分子轨道(FMO)计算可用于分析片段命中的结合相互作用的性质,以便选择用于进化、合并和连接的片段,从而优化成功的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验