Tavoni G, Cocco S, Monasson R
Laboratoire de Physique Statistique, Ecole Normale Supérieure, CNRS, PSL Research, Sorbonne Université UPMC, Paris, France.
Laboratoire de Physique Théorique, Ecole Normale Supérieure, CNRS, PSL Research, Sorbonne Université UPMC, Paris, France.
J Comput Neurosci. 2016 Dec;41(3):269-293. doi: 10.1007/s10827-016-0617-5. Epub 2016 Jul 28.
We present two graphical model-based approaches to analyse the distribution of neural activities in the prefrontal cortex of behaving rats. The first method aims at identifying cell assemblies, groups of synchronously activating neurons possibly representing the units of neural coding and memory. A graphical (Ising) model distribution of snapshots of the neural activities, with an effective connectivity matrix reproducing the correlation statistics, is inferred from multi-electrode recordings, and then simulated in the presence of a virtual external drive, favoring high activity (multi-neuron) configurations. As the drive increases groups of neurons may activate together, and reveal the existence of cell assemblies. The identified groups are then showed to strongly coactivate in the neural spiking data and to be highly specific of the inferred connectivity network, which offers a sparse representation of the correlation pattern across neural cells. The second method relies on the inference of a Generalized Linear Model, in which spiking events are integrated over time by neurons through an effective connectivity matrix. The functional connectivity matrices inferred with the two approaches are compared. Sampling of the inferred GLM distribution allows us to study the spatio-temporal patterns of activation of neurons within the identified cell assemblies, particularly their activation order: the prevalence of one order with respect to the others is weak and reflects the neuron average firing rates and the strength of the largest effective connections. Other properties of the identified cell assemblies (spatial distribution of coactivation events and firing rates of coactivating neurons) are discussed.
我们提出了两种基于图形模型的方法来分析行为大鼠前额叶皮质中神经活动的分布。第一种方法旨在识别细胞集合,即同步激活的神经元组,可能代表神经编码和记忆的单元。从多电极记录中推断出神经活动快照的图形(伊辛)模型分布,以及一个再现相关统计的有效连接矩阵,然后在虚拟外部驱动的情况下进行模拟,有利于高活动(多神经元)配置。随着驱动的增加,神经元组可能会一起激活,并揭示细胞集合的存在。然后表明所识别的组在神经尖峰数据中强烈共同激活,并且对推断的连接网络具有高度特异性,该网络提供了神经细胞间相关模式的稀疏表示。第二种方法依赖于广义线性模型的推断,其中神经元通过有效连接矩阵随时间整合尖峰事件。比较了用这两种方法推断出的功能连接矩阵。对推断的广义线性模型分布进行采样使我们能够研究已识别细胞集合内神经元激活的时空模式,特别是它们的激活顺序:一种顺序相对于其他顺序的优势较弱,反映了神经元的平均放电率和最大有效连接的强度。还讨论了已识别细胞集合的其他属性(共同激活事件的空间分布和共同激活神经元的放电率)。