Laboratory of Physics of the Ecole Normale Supérieure, CNRS UMR 8023 & PSL Research, Sorbonne Université, Université de Paris, Paris, France.
Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, Sorbonne Université, CNRS, Paris, France.
Elife. 2023 Mar 14;12:e79541. doi: 10.7554/eLife.79541.
Establishing accurate as well as interpretable models of network activity is an open challenge in systems neuroscience. Here, we infer an energy-based model of the anterior rhombencephalic turning region (ARTR), a circuit that controls zebrafish swimming statistics, using functional recordings of the spontaneous activity of hundreds of neurons. Although our model is trained to reproduce the low-order statistics of the network activity at short time scales, its simulated dynamics quantitatively captures the slowly alternating activity of the ARTR. It further reproduces the modulation of this persistent dynamics by the water temperature and visual stimulation. Mathematical analysis of the model unveils a low-dimensional landscape-based representation of the ARTR activity, where the slow network dynamics reflects Arrhenius-like barriers crossings between metastable states. Our work thus shows how data-driven models built from large neural populations recordings can be reduced to low-dimensional functional models in order to reveal the fundamental mechanisms controlling the collective neuronal dynamics.
建立准确且可解释的网络活动模型是系统神经科学中的一个开放性挑战。在这里,我们使用数百个神经元自发活动的功能记录,推断出控制斑马鱼游泳统计数据的前菱形转向区 (ARTR) 的基于能量的模型。尽管我们的模型经过训练可以在短时间尺度上再现网络活动的低阶统计数据,但它模拟的动力学定量地捕捉了 ARTR 的缓慢交替活动。它进一步再现了这种持续动力学由水温和视觉刺激的调制。对模型的数学分析揭示了 ARTR 活动的基于低维景观的表示,其中慢网络动力学反映了在亚稳态之间的类似于阿伦尼乌斯的势垒穿越。因此,我们的工作表明,如何从大型神经元群体记录中构建的数据驱动模型可以简化为低维功能模型,以揭示控制集体神经元动力学的基本机制。