Department of Plant & Environmental Sciences, Clemson University , Clemson, South Carolina 29634, United States.
Crop Production Systems Research Unit, U.S. Department of Agriculture , Stoneville, Mississippi 38776, United States.
J Agric Food Chem. 2016 Sep 21;64(37):7040-8. doi: 10.1021/acs.jafc.6b02196. Epub 2016 Sep 12.
Biotic and abiotic stressors often result in the buildup of amino acid pools in plants, which serve as potential stress mitigators. However, the role of anabolic (de novo amino acid synthesis) versus catabolic (proteolytic) processes in contributing to free amino acid pools is less understood. Using stable isotope-resolved metabolomics (SIRM), we measured the de novo amino acid synthesis in glyphosate susceptible (S-) and resistant (R-) Amaranthus palmeri biotypes. In the S-biotype, glyphosate treatment at 0.4 kg ae/ha resulted in an increase in total amino acids, a proportional increase in both (14)N and (15)N amino acids, and a decrease in soluble proteins. This indicates a potential increase in de novo amino acid synthesis, coupled with a lower protein synthesis and a higher protein catabolism following glyphosate treatment in the S-biotype. Furthermore, the ratio of glutamine/glutamic acid (Gln/Glu) in the glyphosate-treated S- and R-biotypes indicated that the initial assimilation of inorganic nitrogen to organic forms is less affected by glyphosate. However, amino acid biosynthesis downstream of glutamine is disproportionately disrupted in the glyphosate treated S-biotype. It is thus concluded that the herbicide-induced amino acid abundance in the S-biotype is contributed by both protein catabolism and de novo synthesis of amino acids such as glutamine and asparagine.
生物和非生物胁迫因子常导致植物中氨基酸库的积累,这些氨基酸库可作为潜在的应激缓解剂。然而,对于参与游离氨基酸库的合成代谢(从头合成氨基酸)和分解代谢(蛋白水解)过程的作用,我们的了解还比较有限。本研究使用稳定同位素解析代谢组学(SIRM),测定了对草甘膦敏感(S-)和抗性(R-)猪殃殃生物型中的从头合成氨基酸。在 S-生物型中,用 0.4 kg ae/ha 的草甘膦处理会导致总氨基酸增加,(14)N 和(15)N 氨基酸的比例增加,可溶性蛋白减少。这表明在 S-生物型中,草甘膦处理后可能会增加从头合成氨基酸的合成,同时降低蛋白质的合成和增加蛋白质的分解代谢。此外,草甘膦处理的 S-和 R-生物型中谷氨酰胺/谷氨酸(Gln/Glu)的比值表明,无机氮向有机形式的最初同化受草甘膦的影响较小。然而,在草甘膦处理的 S-生物型中,谷氨酰胺下游的氨基酸生物合成受到不成比例的破坏。因此可以得出结论,草甘膦诱导的 S-生物型中氨基酸丰度的增加是由蛋白质分解代谢和如谷氨酰胺和天冬酰胺等氨基酸的从头合成共同贡献的。