Buffon Giseli, Lamb Thainá Inês, Lopes Mara Cristina Barbosa, Sperotto Raul Antonio, Timmers Luís Fernando Saraiva Macedo
Graduate Program in Biotechnology, University of Taquari Valley - Univates, Lajeado, Brazil.
Biological Sciences and Health Center, University of Taquari Valley - Univates, Lajeado, Brazil.
Front Bioeng Biotechnol. 2020 Feb 14;8:73. doi: 10.3389/fbioe.2020.00073. eCollection 2020.
Advancements in genetically modified herbicide tolerance technology opened a new way to manage weed populations in crop fields. Since then, many important genetically modified crops that are tolerant to various herbicides have been developed and commercialized. Herbicides primarily act by disrupting key enzymes involved in essential metabolic or physiological processes associated with growth and development of plants. Most of the herbicide tolerant plants have been developed by introducing point mutations (non-GM approach) in the target site of herbicide action, due to the advantage of easier registration/release for commercial cultivation as well as wider public acceptance. Of the various herbicides, Imidazolinones are probably the most widely targeted ones for developing herbicide tolerant crops through non-GM approach. In rice, different mutant lines presenting amino acids changes in acetolactate synthase (ALS) have the ability to tolerate different Imidazolinones, including point mutations of Glycine to Glutamate in position 628, Serine to Asparagine in position 627, and a double mutation Tryptophan to Leucine in position 548/Serine to Isoleucine in position 627. The use of specific herbicides in combination of these mutant lines provides a reliable approach to eliminate weeds in the fields. However, the continuous overuse of a single herbicide multiple times in a growing season increases the potential risk of evolution of resistant weeds, which has become a major concern in agriculture worldwide. For this reason, the development of novel mutations in ALS (Os02g30630) to generate rice plants more tolerant to Imidazolinones than the available mutant rice lines is still a hot topic in plant-herbicide interaction field. Keeping that in mind, we carried out molecular docking experiments of Imidazolinone herbicides imazapic, imazapyr, imazaquin, and imazethapyr to evaluate the interaction of these molecules in the binding cavity of ALS from rice, being able to identify the most important amino acids responsible for the stability of these four herbicides. After introducing point mutations in these specific positions (one at a time) using Alanine scanning mutagenesis method and recalculating the effect in the affinity of herbicide-ALS interaction, we were able to propose novel amino acid residues (mainly Lysine in position 230 and Arginine in position 351) on the structure of ALS presenting a highest impact in the binding of Imidazolinones to ALS when compared to the already known amino acid mutations. This rational approach allows the researcher/farmer to choose the number of point mutations to be inserted in a rice cultivar, which will be dependent on the type of Imidazolinone used. To obtain a rice cultivar capable to tolerate the four Imidazolinone tested at the same time, we suggest six amino acid mutations at positions Val170, Phe180, Lys230, Arg351, Trp548, and Ser627 in the OsALS1.
转基因抗除草剂技术的进步为管理农田杂草种群开辟了一条新途径。从那时起,许多对各种除草剂具有耐受性的重要转基因作物已被研发并商业化。除草剂主要通过破坏参与植物生长和发育所必需的代谢或生理过程的关键酶来发挥作用。由于更容易进行商业种植登记/推广以及更广泛的公众接受度等优势,大多数抗除草剂植物是通过在除草剂作用的靶位点引入点突变(非转基因方法)培育而成的。在各种除草剂中,咪唑啉酮类可能是通过非转基因方法培育抗除草剂作物时最广泛针对的一类。在水稻中,不同的突变系在乙酰乳酸合成酶(ALS)中呈现氨基酸变化,能够耐受不同的咪唑啉酮类,包括第628位甘氨酸突变为谷氨酸、第627位丝氨酸突变为天冬酰胺,以及第548位色氨酸/第627位丝氨酸分别突变为亮氨酸/异亮氨酸的双突变。将这些突变系与特定除草剂结合使用为消除田间杂草提供了一种可靠的方法。然而,在一个生长季节中多次连续过度使用单一除草剂会增加杂草产生抗性进化的潜在风险,这已成为全球农业的一个主要担忧。因此,在ALS(Os02g30630)中开发新的突变以培育比现有突变水稻品系更耐受咪唑啉酮类的水稻植株,仍然是植物 - 除草剂相互作用领域的一个热门话题。考虑到这一点,我们对咪唑啉酮类除草剂咪草酸、灭草烟、咪唑喹啉酸和甲氧咪草烟进行了分子对接实验,以评估这些分子在水稻ALS结合腔中的相互作用,从而能够确定对这四种除草剂稳定性起最重要作用的氨基酸。使用丙氨酸扫描诱变方法在这些特定位置(一次一个)引入点突变并重新计算除草剂与ALS相互作用亲和力的影响后,与已知的氨基酸突变相比,我们能够在ALS结构上提出对咪唑啉酮类与ALS结合影响最大的新氨基酸残基(主要是第230位的赖氨酸和第351位的精氨酸)。这种合理的方法使研究人员/农民能够根据所使用的咪唑啉酮类的类型选择要插入水稻品种中的点突变数量。为了获得能够同时耐受所测试的四种咪唑啉酮类的水稻品种,我们建议在OsALS1的第170位缬氨酸、第180位苯丙氨酸、第230位赖氨酸、第351位精氨酸、第548位色氨酸和第627位丝氨酸处进行六个氨基酸突变。