Little Daniel R, Wang Tony, Nosofsky Robert M
The University of Melbourne, Australia.
The University of Melbourne, Australia; Brown University, United States.
Cogn Psychol. 2016 Sep;89:1-38. doi: 10.1016/j.cogpsych.2016.07.001. Epub 2016 Jul 26.
Among the most fundamental results in the area of perceptual classification are the "correlated facilitation" and "filtering interference" effects observed in Garner's (1974) speeded categorization tasks: In the case of integral-dimension stimuli, relative to a control task, single-dimension classification is faster when there is correlated variation along a second dimension, but slower when there is orthogonal variation that cannot be filtered out (e.g., by attention). These fundamental effects may result from participants' use of a trial-by-trial bypass strategy in the control and correlated tasks: The observer changes the previous category response whenever the stimulus changes, and maintains responses if the stimulus repeats. Here we conduct modified versions of the Garner tasks that eliminate the availability of a pure bypass strategy. The fundamental facilitation and interference effects remain, but are still largely explainable in terms of pronounced sequential effects in all tasks. We develop sequence-sensitive versions of exemplar-retrieval and decision-bound models aimed at capturing the detailed, trial-by-trial response-time distribution data. The models combine assumptions involving: (i) strengthened perceptual/memory representations of stimuli that repeat across consecutive trials, and (ii) a bias to change category responses on trials in which the stimulus changes. These models can predict our observed effects and provide a more complete account of the underlying bases of performance in our modified Garner tasks.
在知觉分类领域最基本的研究成果中,有在加纳(1974年)的快速分类任务中观察到的“相关促进”和“过滤干扰”效应:对于整体维度刺激,相对于控制任务,当沿第二个维度存在相关变化时,单维度分类会更快,但当存在无法过滤掉的正交变化(例如通过注意力)时,单维度分类会更慢。这些基本效应可能源于参与者在控制任务和相关任务中使用的逐个试次的绕过策略:只要刺激发生变化,观察者就会改变之前的类别反应,而如果刺激重复则维持反应。在这里,我们进行了加纳任务的修改版本,消除了纯绕过策略的可用性。基本的促进和干扰效应仍然存在,但在所有任务中,仍然很大程度上可以用明显的序列效应来解释。我们开发了示例检索和决策边界模型的序列敏感版本,旨在捕捉详细的、逐个试次的反应时间分布数据。这些模型结合了以下假设:(i)对在连续试次中重复出现的刺激的感知/记忆表征得到加强,以及(ii)在刺激发生变化的试次上改变类别反应的倾向。这些模型可以预测我们观察到的效应,并更完整地解释我们修改后的加纳任务中表现的潜在基础。