Nosofsky R M, Palmeri T J
Department of Psychology, Indiana University, Bloomington 47405, USA.
Psychol Rev. 1997 Apr;104(2):266-300. doi: 10.1037/0033-295x.104.2.266.
The authors propose and test an exemplar-based random walk model for predicting response times in tasks of speeded, multidimensional perceptual classification. The model combines elements of R. M. Nosofsky's (1986) generalized context model of categorization and G. D. Logan's (1988) instance-based model of automaticity. In the model, exemplars race among one another to be retrieved from memory, with rates determined by their similarity to test items. The retrieved exemplars provide incremental information that enters into a random walk process for making classification decisions. The model predicts correctly effects of within- and between-categories similarity, individual-object familiarity, and extended practice on classification response times. It also builds bridges between the domains of categorization and automaticity.
作者提出并测试了一种基于范例的随机游走模型,用于预测快速多维感知分类任务中的反应时间。该模型结合了R.M.诺索夫斯基(1986年)的广义分类情境模型和G.D.洛根(1988年)的基于实例的自动性模型的元素。在该模型中,范例在彼此之间竞争以便从记忆中被检索出来,其速率由它们与测试项目的相似性决定。检索到的范例提供增量信息,这些信息进入一个随机游走过程以做出分类决策。该模型正确地预测了类别内和类别间相似性、单个对象熟悉度以及扩展练习对分类反应时间的影响。它还在分类和自动性领域之间架起了桥梁。