Janson Svante, Luczak Malwina, Windridge Peter, House Thomas
Department of Mathematics, Uppsala University, PO Box 480, 751 06, Uppsala, Sweden.
School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
J Math Biol. 2017 Mar;74(4):843-886. doi: 10.1007/s00285-016-1043-z. Epub 2016 Jul 30.
Emergence of new diseases and elimination of existing diseases is a key public health issue. In mathematical models of epidemics, such phenomena involve the process of infections and recoveries passing through a critical threshold where the basic reproductive ratio is 1. In this paper, we study near-critical behaviour in the context of a susceptible-infective-recovered epidemic on a random (multi)graph on n vertices with a given degree sequence. We concentrate on the regime just above the threshold for the emergence of a large epidemic, where the basic reproductive ratio is [Formula: see text], with [Formula: see text] tending to infinity slowly as the population size, n, tends to infinity. We determine the probability that a large epidemic occurs, and the size of a large epidemic. Our results require basic regularity conditions on the degree sequences, and the assumption that the third moment of the degree of a random susceptible vertex stays uniformly bounded as [Formula: see text]. As a corollary, we determine the probability and size of a large near-critical epidemic on a standard binomial random graph in the 'sparse' regime, where the average degree is constant. As a further consequence of our method, we obtain an improved result on the size of the giant component in a random graph with given degrees just above the critical window, proving a conjecture by Janson and Luczak.
新疾病的出现和现有疾病的消除是一个关键的公共卫生问题。在流行病的数学模型中,此类现象涉及感染和康复过程经过一个临界阈值,此时基本再生数为1。在本文中,我们在具有给定度序列的n个顶点的随机(多)图上的易感-感染-康复流行病的背景下研究近临界行为。我们关注的是刚刚高于大规模流行病出现阈值的情况,此时基本再生数为[公式:见原文],随着种群规模n趋于无穷大,[公式:见原文]缓慢趋于无穷大。我们确定大规模流行病发生的概率以及大规模流行病的规模。我们的结果需要度序列的基本正则性条件,以及随机易感顶点度的三阶矩在[公式:见原文]时保持一致有界的假设。作为推论,我们确定了在“稀疏”状态下标准二项随机图上大规模近临界流行病的概率和规模,其中平均度是常数。作为我们方法的进一步结果,我们在刚好高于临界窗口的具有给定度的随机图中,得到了关于巨分支规模的一个改进结果,证明了扬森和卢扎克的一个猜想。