Gordillo Luis F, Marion Stephen A, Martin-Löf Anders, Greenwood Priscilla E
Mathematical and Theoretical Biology Institute, Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287-1801, USA.
Bull Math Biol. 2008 Feb;70(2):589-602. doi: 10.1007/s11538-007-9269-y. Epub 2007 Nov 9.
We introduce a recursive algorithm which enables the computation of the distribution of epidemic size in a stochastic SIR model for very large population sizes. In the important parameter region where the model is just slightly supercritical, the distribution of epidemic size is decidedly bimodal. We find close agreement between the distribution for large populations and the limiting case where the distribution is that of the time a Brownian motion hits a quadratic curve. The model includes the possibility of vaccination during the epidemic. The effects of the parameters, including vaccination level, on the form of the epidemic size distribution are explored.
我们引入了一种递归算法,该算法能够计算非常大种群规模的随机SIR模型中疫情规模的分布。在模型刚刚略微超临界的重要参数区域,疫情规模的分布明显是双峰的。我们发现,大种群的分布与极限情况(即分布是布朗运动击中二次曲线的时间的分布)之间有着密切的一致性。该模型包括了疫情期间接种疫苗的可能性。我们探讨了包括疫苗接种水平在内的参数对疫情规模分布形式的影响。