Pellis Lorenzo, Ferguson Neil M, Fraser Christophe
Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W2 1PG, United Kingdom.
Math Biosci. 2008 Nov;216(1):63-70. doi: 10.1016/j.mbs.2008.08.009.
Many important results in stochastic epidemic modelling are based on the Reed-Frost model or on other similar models that are characterised by unrealistic temporal dynamics. Nevertheless, they can be extended to many other more realistic models thanks to an argument first provided by Ludwig [Final size distributions for epidemics. Math. Biosci. 23 (1975) 33-46], that states that, for a disease leading to permanent immunity after recovery, under suitable conditions, a continuous-time infectious process has the same final size distribution as another more tractable discrete-generation contact process; in other words, the temporal dynamics of the epidemic can be neglected without affecting the final size distribution. Despite the importance of such an argument, its presence behind many results is often not clearly stated or hidden in references to previous results. In this paper, we reanalyse Ludwig's result, highlighting some of the conditions under which it does not hold and providing a general framework to examine the differences between the continuous-time and the discrete-generation process.
随机流行病建模中的许多重要结果都基于里德 - 弗罗斯特模型或其他具有不切实际时间动态特征的类似模型。然而,由于路德维希首次提出的一个论点[流行病的最终规模分布。数学生物科学。23(1975)33 - 46],这些结果可以扩展到许多其他更现实的模型。该论点指出,对于一种康复后产生永久免疫力的疾病,在适当条件下,一个连续时间感染过程与另一个更易于处理的离散世代接触过程具有相同的最终规模分布;换句话说,流行病的时间动态可以被忽略而不影响最终规模分布。尽管这一论点很重要,但它在许多结果背后的存在往往没有被明确说明,或者隐藏在对先前结果的引用中。在本文中,我们重新分析了路德维希的结果,强调了该结果不成立的一些条件,并提供了一个通用框架来研究连续时间过程和离散世代过程之间的差异。