Suppr超能文献

通过匹配分子对分析进行抗靶点活性的前瞻性预测。

Prospective Prediction of Antitarget Activity by Matched Molecular Pairs Analysis.

作者信息

Warner Daniel J, Bridgland-Taylor Matthew H, Sefton Clare E, Wood David J

机构信息

Department of Medicinal Chemistry, AstraZeneca R&D Montreal, Montreal, Quebec, H4S 1Z9, Canada.

Department of Safety Pharmacology, Safety Assessment UK, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield, SK10 4TG, UK.

出版信息

Mol Inform. 2012 May;31(5):365-8. doi: 10.1002/minf.201200020. Epub 2012 Apr 30.

Abstract

Matched molecular pairs analysis (MMPA)1,2 is an inverse quantitative structure activity relationship (QSAR) technique that is rapidly gaining popularity in the retrospective analysis of large experimental datasets.3,4 While much of the recent focus has been on the differences in properties between structurally related groups of existing compounds, attempts to extend this methodology to the de-novo design of novel structures have been limited. To our knowledge the aggregate effect of multiple transformations, all suggesting the same molecular structure, has only ever being considered within a very limited dataset.5 We therefore sought to test this exciting new approach to the design (and absolute property prediction - effectively QSAR-by-MMPA) of novel chemical entities based on a larger, more diverse dataset, and couple these designs to MMPA-based predictions of antitarget activity.

摘要

匹配分子对分析(MMPA)1,2是一种反向定量构效关系(QSAR)技术,在大型实验数据集的回顾性分析中迅速受到欢迎。3,4虽然最近的大部分重点都放在现有化合物结构相关组之间性质的差异上,但将这种方法扩展到新结构的从头设计的尝试却很有限。据我们所知,多种转化的综合效应,所有这些都表明相同的分子结构,仅在非常有限的数据集中被考虑过。5因此,我们试图基于更大、更多样化的数据集测试这种用于设计新型化学实体(以及绝对性质预测——有效地通过MMPA进行QSAR)的令人兴奋的新方法,并将这些设计与基于MMPA的抗靶标活性预测相结合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验