Suppr超能文献

基于 MMPA-by-QSAR 的设计理念计算机提取及其在 ADME 终点上的应用

In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints.

机构信息

Computational ADME Group, Department of Pharmacokinetics, Dynamics, and Metabolism , Pfizer Worldwide Research & Development , Groton , Connecticut 06340 , United States.

出版信息

J Chem Inf Model. 2019 Jan 28;59(1):477-485. doi: 10.1021/acs.jcim.8b00520. Epub 2018 Dec 12.

Abstract

Matched molecular pair analysis (MMPA) has emerged as a powerful approach to mine and extract tacit knowledge from measured databases of small molecules. Extracted knowledge from past experimentation can assist future lead optimization as an idea generation tool and, hence, reduce the number of design-synthesis-test cycles. While attractive and intuitive, MMPA still presents several limitations. Analyses of internal absorption, distribution, metabolism, and excretion (ADME) databases of measured compounds show that chemical transformations with 10 pairs or more represent less than 1% of the total transforms identified by MMPA. A great wealth of design ideas remains effectively untapped and underutilized as the lack of measured data hinders extraction of robust trends. In this study we report the use of a quantitative structure-activity relationship (QSAR) model augmented MMPA approach (MMPA-by-QSAR) to infer the overall effect of chemical transformations on two essential ADME endpoints-lipophilicity and metabolic clearance. First, QSAR models are employed to predict compound activities, and subsequently, MMPA is used to identify and to extract virtual trends. Results obtained from retrospective analyses showed the ability to predict magnitudes of change close to experimental ones for the majority of transforms from each ADME data set. In the case of the lipophilicity endpoint (SFLogD) 73.7%, 87.85%, and 99% of transforms were predicted within 0.1, 0.15, and 0.3 units of the actual change. In the case of the clearance endpoint (HLM) 67.2%, 82.3%, and 99.5% of transforms were predicted within 0.08, 0.11, and 0.3 log units, respectively. Prospective application of MMPA-by-QSAR on untested compounds identified several novel transforms not observed in our measured data sets. When MMPs from these transforms were screened in our internal assays, it was found that the correct directionality of change was predicted for all but one of the tested transforms, and the predicted magnitudes of change have varying errors between predicted and measured mean changes ranging from 0.01 to 0.24 units for SFLogD and from 0.0 to 0.38 log units for HLM. This proposed MMPA-by-QSAR modeling approach has the potential to allow exploration of infrequent transforms or even identify completely novel transforms where no measured MMP is available.

摘要

配对分子对分析(MMPA)已成为从小分子的实测数据库中挖掘和提取隐性知识的强大方法。从过去的实验中提取的知识可以作为一种创意生成工具来辅助未来的先导化合物优化,从而减少设计-合成-测试的循环次数。尽管这种方法具有吸引力和直观性,但它仍然存在几个局限性。对实测化合物的内部吸收、分布、代谢和排泄(ADME)数据库的分析表明,具有 10 对或更多对的化学转化仅占 MMPA 识别的总转化的不到 1%。由于缺乏实测数据,大量的设计思路仍然没有得到充分利用和挖掘,无法提取出稳健的趋势。在这项研究中,我们报告了使用定量构效关系(QSAR)模型增强 MMPA 方法(MMPA-by-QSAR)来推断化学转化对两个重要 ADME 终点——亲脂性和代谢清除率的整体影响。首先,QSAR 模型被用于预测化合物的活性,然后 MMPA 被用于识别和提取虚拟趋势。从回顾性分析中获得的结果表明,对于每个 ADME 数据集的大多数转化,该方法能够预测出与实验值相近的变化幅度。在亲脂性终点(SFLogD)方面,73.7%、87.85%和 99%的转化在实际变化的 0.1、0.15 和 0.3 个单位内得到了预测。在清除率终点(HLM)方面,67.2%、82.3%和 99.5%的转化在 0.08、0.11 和 0.3 个对数单位内得到了预测。在未测试化合物上应用 MMPA-by-QSAR 方法,确定了一些在我们的实测数据集未观察到的新型转化。当在我们的内部测定中筛选这些转化的 MMP 时,发现除了一个测试转化外,所有转化的变化方向都是正确的,预测的变化幅度与实测平均变化之间的误差在 SFLogD 为 0.01 至 0.24 个单位之间,在 HLM 为 0.0 至 0.38 个对数单位之间。这种 MMPA-by-QSAR 建模方法具有探索罕见转化或甚至识别完全没有实测 MMP 的全新转化的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验