Du Xing, Sang Peng, Xia Yuan-Ling, Li Yi, Liang Jing, Ai Shi-Meng, Ji Xing-Lai, Fu Yun-Xin, Liu Shu-Qun
a Laboratory for Conservation and Utilization of Bio-Resources , Yunnan University , Kunming 650091 , PR China.
b Laboratory of Molecular Cardiology, Department of Cardiology , The First Affiliated Hospital of Kunming Medical University , Kunming 650032 , PR China.
J Biomol Struct Dyn. 2017 May;35(7):1500-1517. doi: 10.1080/07391102.2016.1188155. Epub 2016 Aug 2.
Molecular dynamics (MD) simulations of a subtilisin-like serine protease VPR from the psychrophilic marine bacterium Vibrio sp. PA-44 and its mesophilic homologue, proteinase K (PRK), have been performed for 20 ns at four different temperatures (300, 373, 473, and 573 K). The comparative analyses of MD trajectories reveal that at almost all temperatures, VPR exhibits greater structural fluctuations/deviations, more unstable regular secondary structural elements, and higher global flexibility than PRK. Although these two proteases follow similar unfolding pathways at high temperatures, VPR initiates unfolding at a lower temperature and unfolds faster at the same high temperatures than PRK. These observations collectively indicate that VPR is less stable and more heat-labile than PRK. Analyses of the structural/geometrical properties reveal that, when compared to PRK, VPR has larger radius of gyration (Rg), less intramolecular contacts and hydrogen bonds (HBs), more protein-solvent HBs, and smaller burial of nonpolar area and larger exposure of polar area. These suggest that the increased flexibility of VPR would be most likely caused by its reduced intramolecular interactions and more favourable protein-solvent interactions arising from the larger exposure of the polar area, whereas the enhanced stability of PRK could be ascribed to its increased intramolecular interactions arising from the better optimized hydrophobicity. The factors responsible for the significant differences in local flexibility between these two proteases were also analyzed and ascertained. This study provides insights into molecular basis of thermostability of homologous serine proteases adapted to different temperatures.
对来自嗜冷海洋细菌弧菌属PA - 44的枯草杆菌蛋白酶样丝氨酸蛋白酶VPR及其嗜温同源物蛋白酶K(PRK)进行了分子动力学(MD)模拟,模拟在四个不同温度(300、373、473和573 K)下进行了20纳秒。MD轨迹的比较分析表明,几乎在所有温度下,VPR都比PRK表现出更大的结构波动/偏差、更不稳定的规则二级结构元件以及更高的全局灵活性。尽管这两种蛋白酶在高温下遵循相似的解折叠途径,但VPR在较低温度下开始解折叠,并且在相同高温下比PRK解折叠得更快。这些观察结果共同表明,VPR比PRK更不稳定且对热更敏感。对结构/几何性质的分析表明,与PRK相比,VPR具有更大的回转半径(Rg)、更少的分子内接触和氢键(HBs)、更多的蛋白质 - 溶剂HBs、更小的非极性区域埋藏和更大的极性区域暴露。这些表明,VPR灵活性的增加很可能是由于其分子内相互作用的减少以及极性区域更大暴露所产生的更有利的蛋白质 - 溶剂相互作用,而PRK稳定性的增强可归因于其因更好优化的疏水性而增加的分子内相互作用。还分析并确定了导致这两种蛋白酶局部灵活性存在显著差异的因素。这项研究为适应不同温度的同源丝氨酸蛋白酶热稳定性的分子基础提供了见解。