Suppr超能文献

基于深度 Boltzmann 机的水平集方法在心电影磁共振图像中的心脏运动跟踪

A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images.

机构信息

Department of Radiation Oncology, Washington University, St. Louis, MO 63110, USA.

Laboratoire LITIS (EA 4108), Equipe Quantif, University of Rouen, Rouen 76183, France.

出版信息

Med Image Anal. 2018 Jul;47:68-80. doi: 10.1016/j.media.2018.03.015. Epub 2018 Apr 6.

Abstract

Heart motion tracking for radiation therapy treatment planning can result in effective motion management strategies to minimize radiation-induced cardiotoxicity. However, automatic heart motion tracking is challenging due to factors that include the complex spatial relationship between the heart and its neighboring structures, dynamic changes in heart shape, and limited image contrast, resolution, and volume coverage. In this study, we developed and evaluated a deep generative shape model-driven level set method to address these challenges. The proposed heart motion tracking method makes use of a heart shape model that characterizes the statistical variations in heart shapes present in a training data set. This heart shape model was established by training a three-layered deep Boltzmann machine (DBM) in order to characterize both local and global heart shape variations. During the tracking phase, a distance regularized level-set evolution (DRLSE) method was applied to delineate the heart contour on each frame of a cine MRI image sequence. The trained shape model was embedded into the DRLSE method as a shape prior term to constrain an evolutional shape to reach the desired heart boundary. Frame-by-frame heart motion tracking was achieved by iteratively mapping the obtained heart contour for each frame to the next frame as a reliable initialization, and performing a level-set evolution. The performance of the proposed motion tracking method was demonstrated using thirty-eight coronal cine MRI image sequences.

摘要

心脏运动跟踪在放射治疗计划中可以产生有效的运动管理策略,以最大限度地减少放射性心脏毒性。然而,由于心脏与其相邻结构之间的复杂空间关系、心脏形状的动态变化以及图像对比度、分辨率和体积覆盖范围有限等因素,自动心脏运动跟踪具有挑战性。在这项研究中,我们开发并评估了一种基于深度生成形状模型驱动的水平集方法来解决这些挑战。所提出的心脏运动跟踪方法利用了心脏形状模型,该模型描述了训练数据集中心脏形状的统计变化。该心脏形状模型是通过训练一个三层深度玻尔兹曼机 (DBM) 来建立的,以描述局部和全局心脏形状变化。在跟踪阶段,应用距离正则化水平集演化 (DRLSE) 方法来描绘电影 MRI 图像序列中每一帧的心脏轮廓。训练好的形状模型被嵌入到 DRLSE 方法中作为形状先验项,以约束演化的形状达到期望的心脏边界。通过迭代地将每帧的获得的心脏轮廓映射到下一帧作为可靠的初始化,并进行水平集演化,实现了逐帧的心脏运动跟踪。使用三十八例冠状电影 MRI 图像序列证明了所提出的运动跟踪方法的性能。

相似文献

1
A deep Boltzmann machine-driven level set method for heart motion tracking using cine MRI images.
Med Image Anal. 2018 Jul;47:68-80. doi: 10.1016/j.media.2018.03.015. Epub 2018 Apr 6.
3
Evaluation of potential internal target volume of liver tumors using cine-MRI.
Med Phys. 2014 Nov;41(11):111704. doi: 10.1118/1.4896821.
5
A bidirectional registration neural network for cardiac motion tracking using cine MRI images.
Comput Biol Med. 2023 Jun;160:107001. doi: 10.1016/j.compbiomed.2023.107001. Epub 2023 May 9.
6
Multi-object tracking in MRI-guided radiotherapy using the tracking-learning-detection framework.
Radiother Oncol. 2019 Sep;138:25-29. doi: 10.1016/j.radonc.2019.05.008. Epub 2019 May 25.
7
Fast Deformable Image Registration for Real-Time Target Tracking During Radiation Therapy Using Cine MRI and Deep Learning.
Int J Radiat Oncol Biol Phys. 2023 Mar 15;115(4):983-993. doi: 10.1016/j.ijrobp.2022.09.086. Epub 2022 Oct 26.
9
Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI.
Magn Reson Imaging. 2016 Jun;34(5):699-706. doi: 10.1016/j.mri.2015.12.027. Epub 2015 Dec 29.

引用本文的文献

2
Inter-fractional portability of deep learning models for lung target tracking on cine imaging acquired in MRI-guided radiotherapy.
Phys Eng Sci Med. 2024 Jun;47(2):769-777. doi: 10.1007/s13246-023-01371-z. Epub 2024 Jan 10.
3
Deep Learning for Medical Image-Based Cancer Diagnosis.
Cancers (Basel). 2023 Jul 13;15(14):3608. doi: 10.3390/cancers15143608.
4
Deformable cardiac surface tracking by adaptive estimation algorithms.
Sci Rep. 2023 Jan 25;13(1):1387. doi: 10.1038/s41598-023-28578-0.
5
Co-attention spatial transformer network for unsupervised motion tracking and cardiac strain analysis in 3D echocardiography.
Med Image Anal. 2023 Feb;84:102711. doi: 10.1016/j.media.2022.102711. Epub 2022 Dec 9.
6
Cardiac MRI segmentation of the atria based on UU-NET.
Front Cardiovasc Med. 2022 Nov 24;9:1011916. doi: 10.3389/fcvm.2022.1011916. eCollection 2022.
7
Learning-based Cancer Treatment Outcome Prognosis using Multimodal Biomarkers.
IEEE Trans Radiat Plasma Med Sci. 2022 Feb;6(2):231-244. doi: 10.1109/trpms.2021.3104297. Epub 2021 Aug 12.
8
Machine intelligence in non-invasive endocrine cancer diagnostics.
Nat Rev Endocrinol. 2022 Feb;18(2):81-95. doi: 10.1038/s41574-021-00543-9. Epub 2021 Nov 9.
9
[A review on motion tracking methods for left myocardium based on cardiac cine magnetic resonance image].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2020 Jun 25;37(3):549-556. doi: 10.7507/1001-5515.201904007.

本文引用的文献

1
Gaussian-binary restricted Boltzmann machines for modeling natural image statistics.
PLoS One. 2017 Feb 2;12(2):e0171015. doi: 10.1371/journal.pone.0171015. eCollection 2017.
4
Spatial Precision in Magnetic Resonance Imaging-Guided Radiation Therapy: The Role of Geometric Distortion.
Int J Radiat Oncol Biol Phys. 2016 Jul 15;95(4):1304-16. doi: 10.1016/j.ijrobp.2016.02.059. Epub 2016 Mar 2.
5
Fully Convolutional Networks for Semantic Segmentation.
IEEE Trans Pattern Anal Mach Intell. 2017 Apr;39(4):640-651. doi: 10.1109/TPAMI.2016.2572683. Epub 2016 May 24.
6
Automatic Segmentation of MR Brain Images With a Convolutional Neural Network.
IEEE Trans Med Imaging. 2016 May;35(5):1252-1261. doi: 10.1109/TMI.2016.2548501. Epub 2016 Mar 30.
7
Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images.
IEEE Trans Med Imaging. 2016 May;35(5):1240-1251. doi: 10.1109/TMI.2016.2538465. Epub 2016 Mar 4.
8
Combining Generative and Discriminative Representation Learning for Lung CT Analysis With Convolutional Restricted Boltzmann Machines.
IEEE Trans Med Imaging. 2016 May;35(5):1262-1272. doi: 10.1109/TMI.2016.2526687. Epub 2016 Feb 8.
9
Distance regularized two level sets for segmentation of left and right ventricles from cine-MRI.
Magn Reson Imaging. 2016 Jun;34(5):699-706. doi: 10.1016/j.mri.2015.12.027. Epub 2015 Dec 29.
10
Tagged MRI based cardiac motion modeling and toxicity evaluation in breast cancer radiotherapy.
Front Oncol. 2015 Feb 3;5:9. doi: 10.3389/fonc.2015.00009. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验