Suppr超能文献

运动改善线粒体DNA突变小鼠的早衰:氧化应激、PGC-1α、p53和DNA损伤的相互作用。一种假说。

Amelioration of premature aging in mtDNA mutator mouse by exercise: the interplay of oxidative stress, PGC-1α, p53, and DNA damage. A hypothesis.

作者信息

Safdar Adeel, Annis Sofia, Kraytsberg Yevgenya, Laverack Chloe, Saleem Ayesha, Popadin Konstantin, Woods Dori C, Tilly Jonathan L, Khrapko Konstantin

机构信息

Department of Pediatrics, McMaster University, Hamilton, ON L8N3Z5, Canada.

Department of Biology, Northeastern University, Boston, MA 02215, USA.

出版信息

Curr Opin Genet Dev. 2016 Jun;38:127-132. doi: 10.1016/j.gde.2016.06.011. Epub 2016 Aug 3.

Abstract

The mtDNA mutator mouse lacks the proofreading capacity of the sole mtDNA polymerase, leading to accumulation of somatic mtDNA mutations, and a profound premature aging phenotype including elevated oxidative stress and apoptosis, and reduced mitochondrial function. We have previously reported that endurance exercise alleviates the aging phenotype in the mutator mice, reduces oxidative stress, and enhances mitochondrial biogenesis. Here we summarize our findings, with the emphasis on the central role of p53 in these adaptations. We demonstrate that mtDNA in sedentary and exercised PolG mice carry similar amounts of mutations in muscle, but in addition to that sedentary mice have more non-mutational damage, which is mitigated by exercise. It follows therefore that the profound alleviation of the mtDNA mutator phenotype in muscle by exercise may not require a reduction in mtDNA mutational load, but rather a decrease of mtDNA damage and/or oxidative stress. We further hypothesize that the observed 'alleviation without a reduction of mutational load' implies that the oxidative stress in PolG muscle is maintained, at least in part, by the 'malicious cycle', a hypothetical positive feedback potentially driven by the 'transcriptional mutagenesis', that is the conversion of chemically modified nucleotides into mutant RNA bases by the mitochondrial RNA polymerase.

摘要

线粒体DNA突变小鼠缺乏唯一的线粒体DNA聚合酶的校对能力,导致体细胞线粒体DNA突变积累,并出现严重的早衰表型,包括氧化应激和细胞凋亡加剧,以及线粒体功能降低。我们之前报道过,耐力运动可减轻突变小鼠的衰老表型,降低氧化应激,并增强线粒体生物合成。在此,我们总结我们的发现,重点关注p53在这些适应性变化中的核心作用。我们证明,久坐不动和运动后的PolG小鼠肌肉中的线粒体DNA携带相似数量的突变,但除此之外,久坐不动的小鼠有更多的非突变损伤,而运动可减轻这种损伤。因此,运动对肌肉中线粒体DNA突变体表型的显著缓解可能并不需要降低线粒体DNA突变负荷,而是需要减少线粒体DNA损伤和/或氧化应激。我们进一步推测,观察到的“不降低突变负荷而减轻”意味着,PolG小鼠肌肉中的氧化应激至少部分是由“恶性循环”维持的,这是一种假设的正反馈,可能由“转录诱变”驱动,即线粒体RNA聚合酶将化学修饰的核苷酸转化为突变RNA碱基。

相似文献

2
Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.
Skelet Muscle. 2016 Jan 31;6:7. doi: 10.1186/s13395-016-0075-9. eCollection 2016.
3
Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice.
Free Radic Biol Med. 2014 Oct;75:241-51. doi: 10.1016/j.freeradbiomed.2014.07.038. Epub 2014 Aug 12.
5
Increased mitochondrial biogenesis in muscle improves aging phenotypes in the mtDNA mutator mouse.
Hum Mol Genet. 2012 May 15;21(10):2288-97. doi: 10.1093/hmg/dds049. Epub 2012 Feb 21.
6
Somatic mitochondrial DNA mutations do not increase neuronal vulnerability to MPTP in young POLG mutator mice.
Neurotoxicol Teratol. 2014 Nov-Dec;46:62-7. doi: 10.1016/j.ntt.2014.10.004.
7
Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain.
Neurobiol Aging. 2015 Nov;36(11):2972-2983. doi: 10.1016/j.neurobiolaging.2015.07.020. Epub 2015 Jul 21.
8
Dysregulation of mitochondrial quality control processes contribute to sarcopenia in a mouse model of premature aging.
PLoS One. 2013 Jul 23;8(7):e69327. doi: 10.1371/journal.pone.0069327. Print 2013.
9

引用本文的文献

1
Aging through the lens of mitochondrial DNA mutations and inheritance paradoxes.
Biogerontology. 2024 Dec 27;26(1):33. doi: 10.1007/s10522-024-10175-x.
2
Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features.
Front Integr Neurosci. 2024 Feb 7;17:1275794. doi: 10.3389/fnint.2023.1275794. eCollection 2023.
3
Anticancer therapeutic effect of ginsenosides through mediating reactive oxygen species.
Front Pharmacol. 2023 Jul 26;14:1215020. doi: 10.3389/fphar.2023.1215020. eCollection 2023.
4
Advances in exercise to alleviate sarcopenia in older adults by improving mitochondrial dysfunction.
Front Physiol. 2023 Jul 5;14:1196426. doi: 10.3389/fphys.2023.1196426. eCollection 2023.
5
Red ginseng extract improves skeletal muscle energy metabolism and mitochondrial function in chronic fatigue mice.
Front Pharmacol. 2022 Dec 23;13:1077249. doi: 10.3389/fphar.2022.1077249. eCollection 2022.
7
Keeping the beat against time: Mitochondrial fitness in the aging heart.
Front Aging. 2022 Jul 26;3:951417. doi: 10.3389/fragi.2022.951417. eCollection 2022.
8
The mtDNA mutation spectrum in the PolG mutator mouse reveals germline and somatic selection.
BMC Genom Data. 2021 Nov 26;22(1):52. doi: 10.1186/s12863-021-01005-x.
9
p53: A Key Protein That Regulates Pulmonary Fibrosis.
Oxid Med Cell Longev. 2020 Nov 29;2020:6635794. doi: 10.1155/2020/6635794. eCollection 2020.
10
Constitutive PGC-1α Overexpression in Skeletal Muscle Does Not Contribute to Exercise-Induced Neurogenesis.
Mol Neurobiol. 2021 Apr;58(4):1465-1481. doi: 10.1007/s12035-020-02189-6. Epub 2020 Nov 16.

本文引用的文献

1
Exercise-induced mitochondrial p53 repairs mtDNA mutations in mutator mice.
Skelet Muscle. 2016 Jan 31;6:7. doi: 10.1186/s13395-016-0075-9. eCollection 2016.
2
p53 as guardian of the mitochondrial genome.
FEBS Lett. 2016 Apr;590(7):924-34. doi: 10.1002/1873-3468.12061. Epub 2016 Feb 3.
4
Transcription errors induce proteotoxic stress and shorten cellular lifespan.
Nat Commun. 2015 Aug 25;6:8065. doi: 10.1038/ncomms9065.
5
Mitochondrial DNA mutations in aging.
Prog Mol Biol Transl Sci. 2014;127:29-62. doi: 10.1016/B978-0-12-394625-6.00002-7.
6
Defects in mitochondrial DNA replication and oxidative damage in muscle of mtDNA mutator mice.
Free Radic Biol Med. 2014 Oct;75:241-51. doi: 10.1016/j.freeradbiomed.2014.07.038. Epub 2014 Aug 12.
8
DNA damage in normally and prematurely aged mice.
Aging Cell. 2013 Jun;12(3):467-77. doi: 10.1111/acel.12071. Epub 2013 Apr 24.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验