Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX, 78712, USA.
Neuroscience Program, The University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
BMC Genom Data. 2021 Nov 26;22(1):52. doi: 10.1186/s12863-021-01005-x.
Mitochondrial DNA (mtDNA) codes for products necessary for electron transport and mitochondrial gene translation. mtDNA mutations can lead to human disease and influence organismal fitness. The PolG mutator mouse lacks mtDNA proofreading function and rapidly accumulates mtDNA mutations, making it a model for examining the causes and consequences of mitochondrial mutations. Premature aging in PolG mice and their physiology have been examined in depth, but the location, frequency, and diversity of their mtDNA mutations remain understudied. Identifying the locations and spectra of mtDNA mutations in PolG mice can shed light on how selection shapes mtDNA, both within and across organisms.
Here, we characterized somatic and germline mtDNA mutations in brain and liver tissue of PolG mice to quantify mutation count (number of unique mutations) and frequency (mutation prevalence). Overall, mtDNA mutation count and frequency were the lowest in the D-loop, where an mtDNA origin of replication is located, but otherwise uniform across the mitochondrial genome. Somatic mtDNA mutations have a higher mutation count than germline mutations. However, germline mutations maintain a higher frequency and were also more likely to be silent. Cytosine to thymine mutations characteristic of replication errors were the plurality of basepair changes, and missense C to T mutations primarily resulted in increased protein hydrophobicity. Unlike wild type mice, PolG mice do not appear to show strand asymmetry in mtDNA mutations. Indel mutations had a lower count and frequency than point mutations and tended to be short, frameshift deletions.
Our results provide strong evidence that purifying selection plays a major role in the mtDNA of PolG mice. Missense mutations were less likely to be passed down in the germline, and they were less likely to spread to high frequencies. The D-loop appears to have resistance to mutations, either through selection or as a by-product of replication processes. Missense mutations that decrease hydrophobicity also tend to be selected against, reflecting the membrane-bound nature of mtDNA-encoded proteins. The abundance of mutations from polymerase errors compared with reactive oxygen species (ROS) damage supports previous studies suggesting ROS plays a minimal role in exacerbating the PolG phenotype, but our findings on strand asymmetry provide discussion for the role of polymerase errors in wild type organisms. Our results provide further insight on how selection shapes mtDNA mutations and on the aging mechanisms in PolG mice.
线粒体 DNA(mtDNA)编码电子传递和线粒体基因翻译所需的产物。mtDNA 突变可导致人类疾病并影响生物机体适应性。缺乏 mtDNA 校对功能的 PolG 诱变鼠迅速积累 mtDNA 突变,使其成为研究线粒体突变的原因和后果的模型。PolG 鼠的早衰及其生理学已被深入研究,但它们的 mtDNA 突变的位置、频率和多样性仍研究不足。确定 PolG 鼠 mtDNA 突变的位置和谱可以揭示选择如何塑造 mtDNA,无论是在生物体内部还是跨生物体。
在这里,我们对 PolG 鼠的大脑和肝脏组织中的体细胞和生殖细胞 mtDNA 突变进行了特征描述,以量化突变数量(独特突变数量)和频率(突变流行率)。总体而言,mtDNA 突变数量和频率在 D 环最低,该区域是 mtDNA 复制的起点,但在整个线粒体基因组中基本均匀。体细胞 mtDNA 突变的突变数量高于生殖细胞突变。然而,生殖细胞突变保持更高的频率,并且更可能是沉默的。以复制错误为特征的胞嘧啶到胸腺嘧啶突变是碱基对变化的主要形式,错义 C 到 T 突变主要导致蛋白质疏水性增加。与野生型小鼠不同,PolG 小鼠的 mtDNA 突变似乎没有显示出链不对称性。插入缺失突变的数量和频率低于点突变,并且往往较短,为移码缺失。
我们的研究结果提供了有力的证据表明,净化选择在 PolG 鼠的 mtDNA 中起主要作用。错义突变在生殖细胞中传递的可能性较小,并且不太可能传播到高频。D 环似乎对突变具有抗性,无论是通过选择还是作为复制过程的副产品。降低疏水性的错义突变也倾向于被选择,这反映了 mtDNA 编码蛋白的膜结合性质。聚合酶错误产生的突变与活性氧(ROS)损伤相比的丰度支持了先前的研究表明 ROS 在加剧 PolG 表型中作用不大的观点,但我们关于链不对称性的研究结果为聚合酶错误在野生型生物中的作用提供了讨论。我们的研究结果进一步深入了解了选择如何塑造 mtDNA 突变以及 PolG 鼠的衰老机制。