Division of Biology of Aging, Department of Aging and Geriatric Research, University of Florida, Gainesville, Florida, United States of America.
PLoS One. 2013 Jul 23;8(7):e69327. doi: 10.1371/journal.pone.0069327. Print 2013.
Mitochondrial DNA (mtDNA) mutations lead to decrements in mitochondrial function and accelerated rates of these mutations has been linked to skeletal muscle loss (sarcopenia). The purpose of this study was to investigate the effect of mtDNA mutations on mitochondrial quality control processes in skeletal muscle from animals (young; 3-6 months and older; 8-15 months) expressing a proofreading-deficient version of mtDNA polymerase gamma (PolG). This progeroid aging model exhibits elevated mtDNA mutation rates, mitochondrial dysfunction, and a premature aging phenotype that includes sarcopenia. We found increased expression of the mitochondrial biogenesis regulator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) and its target proteins, nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (Tfam) in PolG animals compared to wild-type (WT) (P<0.05). Muscle from older PolG animals displayed higher mitochondrial fission protein 1 (Fis1) concurrent with greater induction of autophagy, as indicated by changes in Atg5 and p62 protein content (P<0.05). Additionally, levels of the Tom22 import protein were higher in PolG animals when compared to WT (P<0.05). In contrast, muscle from normally-aged animals exhibited a distinctly different expression profile compared to PolG animals. Older WT animals appeared to have higher fusion (greater Mfn1/Mfn2, and lower Fis1) and lower autophagy (Beclin-1 and p62) compared to young WT suggesting that autophagy is impaired in aging muscle. In conclusion, muscle from mtDNA mutator mice display higher mitochondrial fission and autophagy levels that likely contribute to the sarcopenic phenotype observed in premature aging and this differs from the response observed in normally-aged muscle.
线粒体 DNA(mtDNA)突变导致线粒体功能下降,而这些突变的加速与骨骼肌丢失(肌肉减少症)有关。本研究旨在探讨 mtDNA 突变对表达校正缺陷型 mtDNA 聚合酶γ(PolG)的动物骨骼肌中线粒体质量控制过程的影响。这种早衰模型表现出 mtDNA 突变率升高、线粒体功能障碍和包括肌肉减少症在内的过早衰老表型。我们发现,与野生型(WT)相比,PolG 动物中的线粒体生物发生调节剂过氧化物酶体增殖物激活受体γ共激活因子 1α(PGC-1α)及其靶蛋白核呼吸因子 1(NRF-1)和线粒体转录因子 A(Tfam)的表达增加(P<0.05)。与 WT 相比,老年 PolG 动物的肌肉中更高的线粒体分裂蛋白 1(Fis1)伴随着自噬的更大诱导,如 Atg5 和 p62 蛋白含量的变化所示(P<0.05)。此外,与 WT 相比,PolG 动物中的 Tom22 导入蛋白水平更高(P<0.05)。相比之下,正常衰老动物的肌肉表现出与 PolG 动物明显不同的表达谱。与年轻的 WT 相比,老年 WT 动物似乎具有更高的融合(更高的 Mfn1/Mfn2 和更低的 Fis1)和更低的自噬(Beclin-1 和 p62),这表明自噬在衰老肌肉中受损。总之,mtDNA 突变体小鼠的肌肉显示出更高的线粒体分裂和自噬水平,这可能导致过早衰老中观察到的肌肉减少症表型,这与正常衰老肌肉中的反应不同。