Zimin Pavel I, Woods Christian B, Quintana Albert, Ramirez Jan-Marino, Morgan Philip G, Sedensky Margaret M
Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA.
Center for Developmental Therapeutics, Seattle Children's Research Institute, Seattle, WA 98101, USA.
Curr Biol. 2016 Aug 22;26(16):2194-201. doi: 10.1016/j.cub.2016.06.020. Epub 2016 Aug 4.
An enigma of modern medicine has persisted for over 150 years. The mechanisms by which volatile anesthetics (VAs) produce their effects (loss of consciousness, analgesia, amnesia, and immobility) remain an unsolved mystery. Many attractive putative molecular targets have failed to produce a significant effect when genetically tested in whole-animal models [1-3]. However, mitochondrial defects increase VA sensitivity in diverse organisms from nematodes to humans [4-6]. Ndufs4 knockout (KO) mice lack a subunit of mitochondrial complex I and are strikingly hypersensitive to VAs yet resistant to the intravenous anesthetic ketamine [7]. The change in VA sensitivity is the largest reported for a mammal. Limiting NDUFS4 loss to a subset of glutamatergic neurons recapitulates the VA hypersensitivity of Ndufs4(KO) mice, while loss in GABAergic or cholinergic neurons does not. Baseline electrophysiologic function of CA1 pyramidal neurons does not differ between Ndufs4(KO) and control mice. Isoflurane concentrations that anesthetize only Ndufs4(KO) mice (0.6%) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) only in Ndufs4(KO) CA1 neurons, while concentrations effective in control mice (1.2%) decreased sEPSC frequencies in both control and Ndufs4(KO) CA1 pyramidal cells. Spontaneous inhibitory postsynaptic currents (sIPSCs) were not differentially affected between genotypes. The effects of isoflurane were similar on evoked field excitatory postsynaptic potentials (fEPSPs) and paired pulse facilitation (PPF) in KO and control hippocampal slices. We propose that CA1 presynaptic excitatory neurotransmission is hypersensitive to isoflurane in Ndufs4(KO) mice due to the inhibition of pre-existing reduced complex I function, reaching a critical reduction that can no longer meet metabolic demands.
现代医学的一个谜团已经存在了150多年。挥发性麻醉剂(VAs)产生其效应(意识丧失、镇痛、失忆和不动)的机制仍然是一个未解之谜。许多有吸引力的假定分子靶点在全动物模型中进行基因测试时未能产生显著效果[1-3]。然而,线粒体缺陷会增加从线虫到人类等多种生物体对VA的敏感性[4-6]。Ndufs4基因敲除(KO)小鼠缺乏线粒体复合物I的一个亚基,对VAs极度敏感,但对静脉麻醉剂氯胺酮有抗性[7]。VA敏感性的变化是哺乳动物中报道的最大变化。将NDUFS4的缺失限制在谷氨酸能神经元的一个亚群中,可重现Ndufs4(KO)小鼠对VA的超敏感性,而在GABA能或胆碱能神经元中缺失则不会。Ndufs4(KO)小鼠和对照小鼠之间CA1锥体神经元的基线电生理功能没有差异。仅麻醉Ndufs4(KO)小鼠的异氟烷浓度(0.6%)仅降低了Ndufs4(KO)小鼠CA1神经元中自发兴奋性突触后电流(sEPSCs)的频率,而对对照小鼠有效的浓度(1.2%)降低了对照小鼠和Ndufs4(KO)小鼠CA1锥体细胞中sEPSC的频率。自发抑制性突触后电流(sIPSCs)在不同基因型之间没有受到差异影响。异氟烷对KO和对照海马切片中诱发的场兴奋性突触后电位(fEPSPs)和双脉冲易化(PPF)的影响相似。我们提出,由于预先存在的复合物I功能降低受到抑制,Ndufs4(KO)小鼠中CA1突触前兴奋性神经传递对异氟烷高度敏感,达到了一个关键的降低程度,无法再满足代谢需求。