Dubey Priya, Datta Roshni, Eckenhoff Roderic G, Bedell Victoria M
Department of Anaesthesiology and Critical Care, University of Pennsylvania, 3400 Spruce St, Philadelphia, PA, 19104, United States.
bioRxiv. 2024 Dec 21:2024.12.20.629838. doi: 10.1101/2024.12.20.629838.
Anesthetic and sedative drugs are small compounds known to bind to hundreds of proteins. One intriguing binding partner of propofol is the kinesin motor domain, kif5A, a neuronal mitochondrial transport protein. Here, we used zebrafish WT and KO larval behavioral assays to assess anesthetic sensitivity and combined that with zebrafish primary neuronal cell culture to probe for alteration in mitochondrial motility. We found that the loss of increases behavioral sensitivity to propofol and etomidate, with etomidate hypersensitivity greater than propofol. In contrast, KO animals were resistant to the behavioral effects of dexmedetomidine. Finally, WT and KO larvae responded similarly to the behavioral effects of ketamine. Propofol inhibited the anterograde motility of mitochondria in WT zebrafish neurons, while etomidate inhibited mitochondrial motility in both anterograde and retrograde directions; neither drug altered mitochondrial motility in the knockout (KO) neurons. In contrast, dexmedetomidine enhanced retrograde mitochondrial motility in both WT and KO animals. Finally, ketamine had little significant effect on mitochondrial motility in either mutant or WT animals. These data demonstrate that each anesthetic/sedative drug affects the motor protein machinery uniquely and is associated with unique changes in behavior. Understanding how different anesthetic compounds alter neuron motor proteins will be important in defining how anesthetics alter neuronal signaling and energetic dynamics.
麻醉和镇静药物是已知能与数百种蛋白质结合的小分子化合物。丙泊酚一个有趣的结合伙伴是驱动蛋白运动结构域kif5A,一种神经元线粒体运输蛋白。在这里,我们使用斑马鱼野生型和基因敲除幼虫行为试验来评估麻醉敏感性,并将其与斑马鱼原代神经元细胞培养相结合,以探究线粒体运动性的改变。我们发现,基因敲除会增加对丙泊酚和依托咪酯的行为敏感性,依托咪酯超敏反应大于丙泊酚。相比之下,基因敲除动物对右美托咪定的行为效应具有抗性。最后,野生型和基因敲除幼虫对氯胺酮的行为效应反应相似。丙泊酚抑制野生型斑马鱼神经元中线粒体的顺行运动,而依托咪酯在顺行和逆行方向均抑制线粒体运动;两种药物均未改变基因敲除神经元中的线粒体运动。相比之下,右美托咪定增强了野生型和基因敲除动物中的线粒体逆行运动。最后,氯胺酮对突变体或野生型动物的线粒体运动几乎没有显著影响。这些数据表明,每种麻醉/镇静药物对运动蛋白机制的影响都是独特的,并且与行为的独特变化相关。了解不同的麻醉化合物如何改变神经元运动蛋白对于确定麻醉剂如何改变神经元信号传导和能量动态将非常重要。