Wang Yongzhong, Fan Zhen, Shao Lei, Kong Xiaowei, Hou Xianjuan, Tian Dongrui, Sun Ying, Xiao Yazhong, Yu Li
School of Life Sciences, Collaborative Innovation Center of Modern Bio-manufacture, Anhui University, Hefei, People's Republic of China.
Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
Int J Nanomedicine. 2016 Jul 21;11:3287-303. doi: 10.2147/IJN.S107194. eCollection 2016.
Owing to peculiar properties of nanobody, including nanoscale size, robust structure, stable and soluble behaviors in aqueous solution, reversible refolding, high affinity and specificity for only one cognate target, superior cryptic cleft accessibility, and deep tissue penetration, as well as a sustainable source, it has been an ideal research tool for the development of sophisticated nanobiotechnologies. Currently, the nanobody has been evolved into versatile research and application tool kits for diverse biomedical and biotechnology applications. Various nanobody-derived formats, including the nanobody itself, the radionuclide or fluorescent-labeled nanobodies, nanobody homo- or heteromultimers, nanobody-coated nanoparticles, and nanobody-displayed bacteriophages, have been successfully demonstrated as powerful nanobiotechnological tool kits for basic biomedical research, targeting drug delivery and therapy, disease diagnosis, bioimaging, and agricultural and plant protection. These applications indicate a special advantage of these nanobody-derived technologies, already surpassing the "me-too" products of other equivalent binders, such as the full-length antibodies, single-chain variable fragments, antigen-binding fragments, targeting peptides, and DNA-based aptamers. In this review, we summarize the current state of the art in nanobody research, focusing on the nanobody structural features, nanobody production approach, nanobody-derived nanobiotechnology tool kits, and the potentially diverse applications in biomedicine and biotechnology. The future trends, challenges, and limitations of the nanobody-derived nanobiotechnology tool kits are also discussed.
由于纳米抗体具有独特的性质,包括纳米级尺寸、坚固的结构、在水溶液中稳定且可溶的行为、可逆重折叠、对单一同源靶点具有高亲和力和特异性、优异的隐蔽裂隙可及性以及深层组织穿透性,还有可持续的来源,它一直是开发精密纳米生物技术的理想研究工具。目前,纳米抗体已发展成为用于多种生物医学和生物技术应用的多功能研究和应用工具包。各种源自纳米抗体的形式,包括纳米抗体本身、放射性核素或荧光标记的纳米抗体、纳米抗体同多聚体或异多聚体、纳米抗体包被的纳米颗粒以及展示纳米抗体的噬菌体,已被成功证明是用于基础生物医学研究、靶向药物递送与治疗、疾病诊断、生物成像以及农业和植物保护的强大纳米生物技术工具包。这些应用表明了这些源自纳米抗体的技术的特殊优势,已经超越了其他等效结合物的“me-too”产品,如全长抗体、单链可变片段、抗原结合片段、靶向肽和基于DNA的适体。在本综述中,我们总结了纳米抗体研究的当前技术水平,重点关注纳米抗体的结构特征、纳米抗体的生产方法、源自纳米抗体的纳米生物技术工具包以及在生物医学和生物技术中潜在的多样应用。还讨论了源自纳米抗体的纳米生物技术工具包的未来趋势、挑战和局限性。