Suppr超能文献

利用定量尿液代谢组学和CXCL10检测肾移植炎症

Detecting Renal Allograft Inflammation Using Quantitative Urine Metabolomics and CXCL10.

作者信息

Ho Julie, Sharma Atul, Mandal Rupasri, Wishart David S, Wiebe Chris, Storsley Leroy, Karpinski Martin, Gibson Ian W, Nickerson Peter W, Rush David N

机构信息

Department of Internal Medicine, University of Manitoba, Winnipeg, Canada.

Department of Pediatrics & Child Health, University of Manitoba, Winnipeg, Canada.; Biostatistics Group, George and Fay Yee Centre for Health Innovation, University of Manitoba, Winnipeg, Canada.; Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Canada.

出版信息

Transplant Direct. 2016 May 19;2(6):e78. doi: 10.1097/TXD.0000000000000589. eCollection 2016 Jun.

Abstract

BACKGROUND

The goal of this study was to characterize urinary metabolomics for the noninvasive detection of cellular inflammation and to determine if adding urinary chemokine ligand 10 (CXCL10) improves the overall diagnostic discrimination.

METHODS

Urines (n = 137) were obtained before biopsy in 113 patients with no (n = 66), mild (borderline or subclinical; n = 58), or severe (clinical; n = 13) rejection from a prospective cohort of adult renal transplant patients (n = 113). Targeted, quantitative metabolomics was performed with direct flow injection tandem mass spectrometry using multiple reaction monitoring (ABI 4000 Q-Trap). Urine CXCL10 was measured by enzyme-linked immunosorbent assay. A projection on latent structures discriminant analysis was performed and validated using leave-one-out cross-validation, and an optimal 2-component model developed. Chemokine ligand 10 area under the curve (AUC) was determined and net reclassification index and integrated discrimination index analyses were performed.

RESULTS

PLS2 demonstrated that urinary metabolites moderately discriminated the 3 groups (Cohen κ, 0.601; 95% confidence interval [95% CI], 0.46-0.74; P < 0.001). Using binary classifiers, urinary metabolites and CXCL10 demonstrated an AUC of 0.81 (95% CI, 0.74-0.88) and 0.76 (95% CI, 0.68-0.84), respectively, and a combined AUC of 0.84 (95% CI, 0.78-0.91) for detecting alloimmune inflammation that was improved by net reclassification index and integrated discrimination index analyses. Urinary CXCL10 was the best univariate discriminator, followed by acylcarnitines and hexose.

CONCLUSIONS

Urinary metabolomics can noninvasively discriminate noninflamed renal allografts from those with subclinical and clinical inflammation, and the addition of urine CXCL10 had a modest but significant effect on overall diagnostic performance. These data suggest that urinary metabolomics and CXCL10 may be useful for noninvasive monitoring of alloimmune inflammation in renal transplant patients.

摘要

背景

本研究的目的是对用于细胞炎症无创检测的尿液代谢组学进行特征分析,并确定添加尿液趋化因子配体10(CXCL10)是否能提高整体诊断鉴别能力。

方法

在一项针对成年肾移植患者(n = 113)的前瞻性队列研究中,在活检前收集了113例患者的尿液(n = 137),这些患者分别为无排斥反应(n = 66)、轻度排斥反应(临界或亚临床;n = 58)或重度排斥反应(临床;n = 13)。采用多反应监测(ABI 4000 Q-Trap)的直接流动注射串联质谱法进行靶向定量代谢组学分析。通过酶联免疫吸附测定法检测尿液CXCL10。进行潜在结构判别分析投影,并使用留一法交叉验证进行验证,构建了一个最优的双组分模型。测定趋化因子配体10的曲线下面积(AUC),并进行净重新分类指数和综合判别指数分析。

结果

偏最小二乘判别分析2(PLS2)表明尿液代谢产物能够适度区分这三组(科恩κ值,0.601;95%置信区间[95%CI],0.46 - 0.74;P < 0.001)。使用二元分类器时,尿液代谢产物和CXCL10检测同种异体免疫炎症的AUC分别为0.81(95%CI,0.74 - 0.88)和0.76(95%CI,0.68 - 0.84),联合AUC为0.84(95%CI,0.78 - 0.91),净重新分类指数和综合判别指数分析显示联合检测能力有所提高。尿液CXCL10是最佳的单变量判别指标,其次是酰基肉碱和己糖。

结论

尿液代谢组学能够无创地区分未发生炎症的肾移植受者与发生亚临床和临床炎症的受者,添加尿液CXCL10对整体诊断性能有适度但显著的影响。这些数据表明尿液代谢组学和CXCL10可能有助于对肾移植患者的同种异体免疫炎症进行无创监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1fc/4946516/aeafb2aaafbe/txd-2-e78-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验