Suppr超能文献

超级抑制:宿主能力储备与蚊子宿主转换时机共同作用减少西尼罗河病毒的溢出传播

Supersuppression: Reservoir Competency and Timing of Mosquito Host Shifts Combine to Reduce Spillover of West Nile Virus.

作者信息

Levine Rebecca S, Mead Daniel G, Hamer Gabriel L, Brosi Berry J, Hedeen David L, Hedeen Meghan W, McMillan Joseph R, Bisanzio Donal, Kitron Uriel D

机构信息

Department of Environmental Sciences, Emory University, Atlanta, Georgia.

Southeastern Cooperative Wildlife Disease Study, University of Georgia College of Veterinary Medicine, Athens, Georgia.

出版信息

Am J Trop Med Hyg. 2016 Nov 2;95(5):1174-1184. doi: 10.4269/ajtmh.15-0809. Epub 2016 Aug 8.

Abstract

In the eastern United States, human cases of West Nile virus (WNV) result from spillover from urban epizootic transmission between passerine birds and Culex mosquitoes. In Atlanta, GA, substantial WNV presence in hosts and vectors has not resulted in the human disease burden observed in cities with similar infection pressure. Our study goal was to investigate extrinsic ecological conditions that potentially contribute to these reduced transmission rates. We conducted WNV surveillance among hosts and vectors in urban Atlanta and recorded an overall avian seroprevalence of nearly 30%, which was significantly higher among northern cardinals, blue jays, and members of the mimid family, and notably low among American robins. Examination of temporal Culex feeding patterns showed a marked feeding shift from American robins in the early season to northern cardinals in the late season. We therefore rule out American robins as superspreaders in the Atlanta area and suggest instead that northern cardinals and mimids act as WNV "supersuppressor" species, which slow WNV transmission by drawing many infectious bites during the critical virus amplification period, yet failing to amplify transmission due to low host competencies. Of particular interest, urban forest patches provide spillover protection by increasing the WNV amplification fraction on supersuppressor species.

摘要

在美国东部,西尼罗河病毒(WNV)的人类病例源于城市中雀形目鸟类与库蚊之间的动物流行病传播外溢。在佐治亚州亚特兰大市,尽管宿主和病媒中存在大量WNV,但并未导致在具有相似感染压力的城市中所观察到的人类疾病负担。我们的研究目标是调查可能导致这些传播率降低的外部生态条件。我们在亚特兰大市的城市地区对宿主和病媒进行了WNV监测,记录到总体鸟类血清阳性率近30%,在北方红雀、冠蓝鸦和嘲鸫科成员中显著更高,而在美洲知更鸟中则明显较低。对库蚊季节性取食模式的研究表明,取食模式从季节早期的美洲知更鸟显著转变为季节后期的北方红雀。因此,我们排除了美洲知更鸟是亚特兰大地区超级传播者的可能性,转而认为北方红雀和嘲鸫是WNV的“超级抑制”物种,它们在关键的病毒扩增期吸引了许多感染性叮咬,从而减缓了WNV的传播,但由于宿主能力较低而未能扩大传播。特别值得关注的是,城市森林斑块通过增加超级抑制物种上的WNV扩增比例提供了外溢保护。

相似文献

1
Supersuppression: Reservoir Competency and Timing of Mosquito Host Shifts Combine to Reduce Spillover of West Nile Virus.
Am J Trop Med Hyg. 2016 Nov 2;95(5):1174-1184. doi: 10.4269/ajtmh.15-0809. Epub 2016 Aug 8.
2
Limited spillover to humans from West Nile Virus viremic birds in Atlanta, Georgia.
Vector Borne Zoonotic Dis. 2013 Nov;13(11):812-7. doi: 10.1089/vbz.2013.1342. Epub 2013 Oct 9.
3
Epidemiology of West Nile virus in Connecticut: a five-year analysis of mosquito data 1999-2003.
Vector Borne Zoonotic Dis. 2004 Winter;4(4):360-78. doi: 10.1089/vbz.2004.4.360.
5
West Nile virus infection rates and avian serology in east-central Illinois.
J Am Mosq Control Assoc. 2013 Jun;29(2):108-22. doi: 10.2987/12-6318R.1.
6
Evidence for West Nile virus spillover into the squirrel population in Atlanta, Georgia.
Vector Borne Zoonotic Dis. 2015 May;15(5):303-10. doi: 10.1089/vbz.2014.1734.
7
Avian species diversity and transmission of West Nile virus in Atlanta, Georgia.
Parasit Vectors. 2017 Feb 3;10(1):62. doi: 10.1186/s13071-017-1999-6.
8
West Nile virus host-vector-pathogen interactions in a colonial raptor.
Parasit Vectors. 2017 Sep 29;10(1):449. doi: 10.1186/s13071-017-2394-z.
9
Implications of spatial patterns of roosting and movements of American robins for West Nile virus transmission.
Vector Borne Zoonotic Dis. 2012 Oct;12(10):877-85. doi: 10.1089/vbz.2011.0902. Epub 2012 May 31.
10
Rapid amplification of West Nile virus: the role of hatch-year birds.
Vector Borne Zoonotic Dis. 2008 Spring;8(1):57-67. doi: 10.1089/vbz.2007.0123.

引用本文的文献

1
Reappraisal of the Dilution and Amplification Effect Framework: A Case Study in Lyme Disease.
Ecol Evol. 2025 Aug 12;15(8):e71969. doi: 10.1002/ece3.71969. eCollection 2025 Aug.
2
The Alligator and the Mosquito: North American Crocodilians as Amplifiers of West Nile Virus in Changing Climates.
Microorganisms. 2024 Sep 14;12(9):1898. doi: 10.3390/microorganisms12091898.
3
Green cities and vector-borne diseases: emerging concerns and opportunities.
Euro Surveill. 2024 Mar;29(10). doi: 10.2807/1560-7917.ES.2024.29.10.2300548.
5
Bird species define the relationship between West Nile viremia and infectiousness to Culex pipiens mosquitoes.
PLoS Negl Trop Dis. 2022 Oct 6;16(10):e0010835. doi: 10.1371/journal.pntd.0010835. eCollection 2022 Oct.
7
Multi-season transmission model of Eastern Equine Encephalitis.
PLoS One. 2022 Aug 17;17(8):e0272130. doi: 10.1371/journal.pone.0272130. eCollection 2022.
8
Culex quinquefasciatus (Diptera: Culicidae) survivorship following the ingestion of bird blood infected with Haemoproteus sp. parasites.
Parasitol Res. 2021 Jul;120(7):2343-2350. doi: 10.1007/s00436-021-07196-7. Epub 2021 Jun 10.
9
The dynamics of evolutionary rescue from a novel pathogen threat in a host metapopulation.
Sci Rep. 2021 May 25;11(1):10932. doi: 10.1038/s41598-021-90407-z.

本文引用的文献

1
Limited spillover to humans from West Nile Virus viremic birds in Atlanta, Georgia.
Vector Borne Zoonotic Dis. 2013 Nov;13(11):812-7. doi: 10.1089/vbz.2013.1342. Epub 2013 Oct 9.
2
Hemi-nested PCR and RFLP methodologies for identifying blood meals of the Chagas disease vector, Triatoma infestans.
PLoS One. 2013 Sep 11;8(9):e74713. doi: 10.1371/journal.pone.0074713. eCollection 2013.
3
West Nile virus: review of the literature.
JAMA. 2013 Jul 17;310(3):308-15. doi: 10.1001/jama.2013.8042.
6
Fine-scale variation in vector host use and force of infection drive localized patterns of West Nile virus transmission.
PLoS One. 2011;6(8):e23767. doi: 10.1371/journal.pone.0023767. Epub 2011 Aug 19.
7
Vector host-feeding preferences drive transmission of multi-host pathogens: West Nile virus as a model system.
Proc Biol Sci. 2012 Mar 7;279(1730):925-33. doi: 10.1098/rspb.2011.1282. Epub 2011 Aug 17.
8
Models for estimating abundance from repeated counts of an open metapopulation.
Biometrics. 2011 Jun;67(2):577-87. doi: 10.1111/j.1541-0420.2010.01465.x. Epub 2010 Jul 21.
9
The risk of West Nile Virus infection is associated with combined sewer overflow streams in urban Atlanta, Georgia, USA.
Environ Health Perspect. 2010 Oct;118(10):1382-8. doi: 10.1289/ehp.1001939. Epub 2010 Jun 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验