Dail D, Madsen L
Department of Statistics, Oregon State University, Corvallis, Oregon 97331, USA.
Biometrics. 2011 Jun;67(2):577-87. doi: 10.1111/j.1541-0420.2010.01465.x. Epub 2010 Jul 21.
Using only spatially and temporally replicated point counts, Royle (2004b, Biometrics 60, 108-115) developed an N-mixture model to estimate the abundance of an animal population when individual animal detection probability is unknown. One assumption inherent in this model is that the animal populations at each sampled location are closed with respect to migration, births, and deaths throughout the study. In the past this has been verified solely by biological arguments related to the study design as no statistical verification was available. In this article, we propose a generalization of the N-mixture model that can be used to formally test the closure assumption. Additionally, when applied to an open metapopulation, the generalized model provides estimates of population dynamics parameters and yields abundance estimates that account for imperfect detection probability and do not require the closure assumption. A simulation study shows these abundance estimates are less biased than the abundance estimate obtained from the original N-mixture model. The proposed model is then applied to two data sets of avian point counts. The first example demonstrates the closure test on a single-season study of Mallards (Anas platyrhynchos), and the second uses the proposed model to estimate the population dynamics parameters and yearly abundance of American robins (Turdus migratorius) from a multi-year study.
仅使用空间和时间上重复的点计数法,罗伊尔(2004b,《生物统计学》60卷,第108 - 115页)开发了一种N - 混合模型,用于在个体动物检测概率未知时估计动物种群的数量。该模型固有的一个假设是,在整个研究过程中,每个采样地点的动物种群在迁移、出生和死亡方面是封闭的。过去,这仅通过与研究设计相关的生物学论据来验证,因为没有可用的统计验证方法。在本文中,我们提出了N - 混合模型的一种推广形式,可用于正式检验封闭性假设。此外,当应用于开放的集合种群时,广义模型可提供种群动态参数的估计值,并得出考虑了不完美检测概率且不需要封闭性假设的数量估计值。一项模拟研究表明,这些数量估计值的偏差小于从原始N - 混合模型获得的数量估计值。然后将所提出的模型应用于两个鸟类点计数数据集。第一个例子展示了对野鸭(绿头鸭)单季研究的封闭性检验,第二个例子使用所提出的模型从多年研究中估计美洲知更鸟(旅鸫)的种群动态参数和年度数量。