Veldman Lukas M, Stolte Evert W, Canavan Mark P, Broekhoven Rik, Willke Philip, Farinacci Laëtitia, Otte Sander
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
Nat Commun. 2024 Sep 11;15(1):7951. doi: 10.1038/s41467-024-52270-0.
The nuclear spin, being much more isolated from the environment than its electronic counterpart, presents opportunities for quantum experiments with prolonged coherence times. Electron spin resonance (ESR) combined with scanning tunnelling microscopy (STM) provides a bottom-up platform to study the fundamental properties of nuclear spins of single atoms on a surface. However, access to the time evolution of nuclear spins remained a challenge. Here, we present an experiment resolving the nanosecond coherent dynamics of a hyperfine-driven flip-flop interaction between the spin of an individual nucleus and that of an orbiting electron. We use the unique local controllability of the magnetic field emanating from the STM probe tip to bring the electron and nuclear spins in tune, as evidenced by a set of avoided level crossings in ESR-STM. Subsequently, we polarize both spins through scattering of tunnelling electrons and measure the resulting free evolution of the coupled spin system using a DC pump-probe scheme. The latter reveals a complex pattern of multiple interfering coherent oscillations, providing unique insight into hyperfine physics on a single atom level.
与电子自旋相比,核自旋与环境的隔离程度要高得多,这为具有较长相干时间的量子实验提供了机会。电子自旋共振(ESR)与扫描隧道显微镜(STM)相结合,提供了一个自下而上的平台,用于研究表面单个原子核自旋的基本特性。然而,获取核自旋的时间演化仍然是一个挑战。在此,我们展示了一个实验,该实验解决了单个原子核自旋与轨道电子自旋之间超精细驱动的翻转相互作用的纳秒级相干动力学问题。我们利用STM探针尖端发出的磁场的独特局部可控性来使电子和核自旋调谐,这通过ESR-STM中的一组避免能级交叉得以证明。随后,我们通过隧穿电子的散射使两个自旋极化,并使用直流泵浦-探测方案测量耦合自旋系统的自由演化。后者揭示了多个干涉相干振荡的复杂模式,为单原子水平上的超精细物理提供了独特的见解。