Saint-Ruf Claude, Crussard Steve, Franceschi Christine, Orenga Sylvain, Ouattara Jasmine, Ramjeet Mahendrasingh, Surre Jérémy, Matic Ivan
Institut National de la Santé et de la Recherche Médicale, Sorbonne Paris Cité, Faculté de Médecine Paris Descartes, Université Paris Descartes Paris, France.
Microbiology Unit, R&D Microbiology, BioMérieux SA La Balme Les Grottes, France.
Front Microbiol. 2016 Jul 26;7:1121. doi: 10.3389/fmicb.2016.01121. eCollection 2016.
Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.
用适当的抗生素快速治疗感染至关重要。这需要快速准确地测定细菌病原体的抗生素敏感性。最常用的方法速度较慢,因为它们基于对生长抑制的测量。更快的方法,如基于PCR检测抗生素耐药性决定因素的方法,并不总是能提供有关敏感性的相关信息,特别是那些非基于基因的信息。因此,人们正在探索新的方法,如使用流式细胞术和荧光活力标记物检测抗生素引起的细菌生理学变化。在本研究中,我们评估了靶向羰基的Alexa Fluor® 633酰肼(AFH)是否可用于抗生素敏感性测试。细胞大分子的羰基化在抗生素处理的细胞中会增加,由于其不可逆性,特别适合用于此目的的评估。我们测试了革兰氏阴性菌临床分离株大肠杆菌和铜绿假单胞菌对β-内酰胺类、氨基糖苷类和氟喹诺酮类这三类抗生素的敏感性。除了AFH,我们还使用了TO-PRO®-3(它进入膜受损的细胞并与DNA结合)和DiBAC4(3)(它进入膜去极化的细胞)。我们还通过分析光散射信号监测抗生素诱导的细菌细胞形态变化。尽管所有测试的染料和光散射信号都能检测出抗生素敏感细胞,但AFH被证明最适合快速可靠地检测抗生素敏感性。