Suppr超能文献

一家三级医院坏死性筋膜炎患者的死亡模式及预测因素

Pattern and predictors of mortality in necrotizing fasciitis patients in a single tertiary hospital.

作者信息

Jabbour Gaby, El-Menyar Ayman, Peralta Ruben, Shaikh Nissar, Abdelrahman Husham, Mudali Insolvisagan Natesa, Ellabib Mohamed, Al-Thani Hassan

机构信息

Department of Surgery, Hamad General Hospital (HGH), Doha, Qatar.

Clinical Research, Trauma Surgery, Hamad General Hospital, Doha, Qatar ; Clinical Medicine, Weill Cornell Medical School, Doha, Qatar.

出版信息

World J Emerg Surg. 2016 Aug 8;11:40. doi: 10.1186/s13017-016-0097-y. eCollection 2016.

Abstract

BACKGROUND

Necrotizing fasciitis (NF) is a fatal aggressive infectious disease. We aimed to assess the major contributing factors of mortality in NF patients.

METHODS

A retrospective study was conducted at a single surgical intensive care unit between 2000 and 2013. Patients were categorized into 2 groups based on their in-hospital outcome (survivors versus non-survivors).

RESULTS

During a14-year period, 331 NF patients were admitted with a mean age of 50.8 ± 15.4 years and 74 % of them were males Non-survivors (26 %) were 14.5 years older (p = 0.001) and had lower frequency of pain (p = 0.01) and fever (p = 0.001) than survivors (74 %) at hospital presentation. Diabetes mellitus, hypertension, and coronary artery disease were more prevalent among non-survivors (p = 0.001). The 2 groups were comparable for the site of infection; except for sacral region that was more involved in non-survivors (p = 0.005). On admission, non-survivors had lower hemoglobin levels (p = 0.001), platelet count (p = 0.02), blood glucose levels (p = 0.07) and had higher serum creatinine (p = 0.001). Non-survivors had greater median LRINEC (Laboratory Risk Indicator for NECrotizing fasciitis score) and Sequential Organ Failure Assessment (SOFA) scores (p = 0.001). Polybacterial and monobacterial gram negative infections were more evident in non-survivors group. Monobacterial pseudomonas (p = 0.01) and proteus infections (p = 0.005) were reported more among non-survivors. The overall mortality was 26 % and the major causes of death were bacteremia, septic shock and multiorgan failure. Multivariate analysis showed that age and SOFA score were independent predictors of mortality in the entire study population.

CONCLUSION

The mortality rate is quite high as one quarter of NF patients died during hospitalization. The present study highlights the clinical and laboratory characteristics and predictors of mortality in NF patients.

摘要

背景

坏死性筋膜炎(NF)是一种致命的侵袭性传染病。我们旨在评估NF患者死亡的主要影响因素。

方法

在2000年至2013年期间,于一家外科重症监护病房进行了一项回顾性研究。根据患者的院内结局(存活者与非存活者)将其分为两组。

结果

在14年期间,共收治331例NF患者,平均年龄为50.8±15.4岁,其中74%为男性。非存活者(26%)比存活者(74%)在入院时年龄大14.5岁(p=0.001),疼痛(p=0.01)和发热(p=0.001)的发生率更低。糖尿病、高血压和冠状动脉疾病在非存活者中更为常见(p=0.001)。两组在感染部位方面具有可比性;除了骶尾部在非存活者中受累更多(p=0.005)。入院时,非存活者的血红蛋白水平(p=0.001)、血小板计数(p=0.02)、血糖水平(p=0.07)较低,血清肌酐水平较高(p=0.001)。非存活者的坏死性筋膜炎实验室风险指标(LRINEC)中位数和序贯器官衰竭评估(SOFA)评分更高(p=0.001)。多细菌和单细菌革兰氏阴性感染在非存活者组中更为明显。非存活者中报告的单细菌铜绿假单胞菌感染(p=0.01)和变形杆菌感染(p=0.005)更多。总体死亡率为26%,主要死亡原因是菌血症、感染性休克和多器官功能衰竭。多变量分析表明,年龄和SOFA评分是整个研究人群死亡的独立预测因素。

结论

由于四分之一的NF患者在住院期间死亡,死亡率相当高。本研究强调了NF患者的临床和实验室特征以及死亡预测因素。

相似文献

引用本文的文献

本文引用的文献

2
Deaths from necrotizing fasciitis in the United States, 2003-2013.2003年至2013年美国坏死性筋膜炎导致的死亡情况。
Epidemiol Infect. 2016 Apr;144(6):1338-44. doi: 10.1017/S0950268815002745. Epub 2015 Nov 9.
4
Necrotizing fasciitis: risk factors of mortality.坏死性筋膜炎:死亡风险因素
Risk Manag Healthc Policy. 2015 Feb 16;8:1-7. doi: 10.2147/RMHP.S77691. eCollection 2015.
8
Early diagnosis of necrotizing fasciitis.早期诊断坏死性筋膜炎。
Br J Surg. 2014 Jan;101(1):e119-25. doi: 10.1002/bjs.9371. Epub 2013 Nov 29.
9
Necrotizing fasciitis: eight-year experience and literature review.坏死性筋膜炎:八年经验和文献回顾。
Braz J Infect Dis. 2014 Mar-Apr;18(2):137-43. doi: 10.1016/j.bjid.2013.08.003. Epub 2013 Nov 22.
10
Necrotising soft tissue infection-risk factors for mortality.坏死性软组织感染——死亡的危险因素
J Clin Diagn Res. 2013 Aug;7(8):1662-5. doi: 10.7860/JCDR/2013/5535.3240. Epub 2013 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验