Suppr超能文献

用于环境建模的时空插值

Spatiotemporal Interpolation for Environmental Modelling.

作者信息

Susanto Ferry, de Souza Paulo, He Jing

机构信息

Data61, CSIRO, College Road, Sandy Bay TAS 7005, Australia.

College of Engineering and Science, Victoria University, Footscray VIC 3011, Australia.

出版信息

Sensors (Basel). 2016 Aug 6;16(8):1245. doi: 10.3390/s16081245.

Abstract

A variation of the reduction-based approach to spatiotemporal interpolation (STI), in which time is treated independently from the spatial dimensions, is proposed in this paper. We reviewed and compared three widely-used spatial interpolation techniques: ordinary kriging, inverse distance weighting and the triangular irregular network. We also proposed a new distribution-based distance weighting (DDW) spatial interpolation method. In this study, we utilised one year of Tasmania's South Esk Hydrology model developed by CSIRO. Root mean squared error statistical methods were performed for performance evaluations. Our results show that the proposed reduction approach is superior to the extension approach to STI. However, the proposed DDW provides little benefit compared to the conventional inverse distance weighting (IDW) method. We suggest that the improved IDW technique, with the reduction approach used for the temporal dimension, is the optimal combination for large-scale spatiotemporal interpolation within environmental modelling applications.

摘要

本文提出了一种基于归约的时空插值(STI)方法的变体,该方法将时间与空间维度独立处理。我们回顾并比较了三种广泛使用的空间插值技术:普通克里金法、反距离加权法和不规则三角网法。我们还提出了一种新的基于分布的距离加权(DDW)空间插值方法。在本研究中,我们使用了由澳大利亚联邦科学与工业研究组织(CSIRO)开发的塔斯马尼亚南埃斯克河一年的水文模型。采用均方根误差统计方法进行性能评估。我们的结果表明,所提出的归约方法优于STI的扩展方法。然而,与传统的反距离加权(IDW)方法相比,所提出的DDW方法益处不大。我们建议,将改进的IDW技术与用于时间维度的归约方法相结合,是环境建模应用中大规模时空插值的最佳组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c06c/5017410/52b10ecfc597/sensors-16-01245-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验