Suppr超能文献

空间与环境暴露组-健康研究中的方法学挑战

Methodological Challenges in Spatial and Contextual Exposome-Health Studies.

作者信息

Hu Hui, Liu Xiaokang, Zheng Yi, He Xing, Hart Jaime, James Peter, Laden Francine, Chen Yong, Bian Jiang

机构信息

Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.

出版信息

Crit Rev Environ Sci Technol. 2023;53(7):827-846. doi: 10.1080/10643389.2022.2093595. Epub 2022 Jul 4.

Abstract

The concept of the exposome encompasses the totality of exposures from a variety of external and internal sources across an individual's life course. The wealth of existing spatial and contextual data makes it appealing to characterize individuals' external exposome to advance our understanding of environmental determinants of health. However, the spatial and contextual exposome is very different from other exposome factors measured at the individual-level as spatial and contextual exposome data are more heterogenous with unique correlation structures and various spatiotemporal scales. These distinctive characteristics lead to multiple unique methodological challenges across different stages of a study. This article provides a review of the existing resources, methods, and tools in the new and developing field for spatial and contextual exposome-health studies focusing on four areas: (1) data engineering, (2) spatiotemporal data linkage, (3) statistical methods for exposome-health association studies, and (4) machine- and deep-learning methods to use spatial and contextual exposome data for disease prediction. A critical analysis of the methodological challenges involved in each of these areas is performed to identify knowledge gaps and address future research needs.

摘要

暴露组的概念涵盖了个体生命历程中来自各种外部和内部来源的所有暴露。现有的丰富空间和背景数据使得刻画个体的外部暴露组以增进我们对健康的环境决定因素的理解变得颇具吸引力。然而,空间和背景暴露组与在个体层面测量的其他暴露组因素非常不同,因为空间和背景暴露组数据具有更异质性,具有独特的相关结构和各种时空尺度。这些独特的特征在研究的不同阶段带来了多个独特的方法学挑战。本文综述了空间和背景暴露组-健康研究这一新兴领域中的现有资源、方法和工具,重点关注四个领域:(1)数据工程,(2)时空数据链接,(3)暴露组-健康关联研究的统计方法,以及(4)使用空间和背景暴露组数据进行疾病预测的机器学习和深度学习方法。对这些领域中涉及的方法学挑战进行了批判性分析,以识别知识空白并满足未来的研究需求。

相似文献

1
Methodological Challenges in Spatial and Contextual Exposome-Health Studies.
Crit Rev Environ Sci Technol. 2023;53(7):827-846. doi: 10.1080/10643389.2022.2093595. Epub 2022 Jul 4.
2
A spatial and contextual exposome-wide association study and polyexposomic score of COVID-19 hospitalization.
Exposome. 2023 Apr 11;3(1):osad005. doi: 10.1093/exposome/osad005. eCollection 2023 May.
3
[Exposome: from definition to future challenges.].
Recenti Prog Med. 2023 Jun;114(6):349-354. doi: 10.1701/4042.40227.
4
Applying the exposome concept in birth cohort research: a review of statistical approaches.
Eur J Epidemiol. 2020 Mar;35(3):193-204. doi: 10.1007/s10654-020-00625-4. Epub 2020 Mar 27.
5
Semantic standards of external exposome data.
Environ Res. 2021 Jun;197:111185. doi: 10.1016/j.envres.2021.111185. Epub 2021 Apr 24.
6
Addressing Exposome: An Innovative Approach to Environmental Determinants in Pediatric Respiratory Health.
Front Public Health. 2022 Jun 14;10:871140. doi: 10.3389/fpubh.2022.871140. eCollection 2022.
9
The Pregnancy Exposome.
Curr Environ Health Rep. 2015 Jun;2(2):204-13. doi: 10.1007/s40572-015-0043-2.
10
Use of the "Exposome" in the Practice of Epidemiology: A Primer on -Omic Technologies.
Am J Epidemiol. 2016 Aug 15;184(4):302-14. doi: 10.1093/aje/kwv325.

引用本文的文献

1
FHIR PIT: a geospatial and spatiotemporal data integration pipeline to support subject-level clinical research.
BMC Med Inform Decis Mak. 2025 Jan 15;25(1):24. doi: 10.1186/s12911-024-02815-6.
3
A review of geospatial exposure models and approaches for health data integration.
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):131-148. doi: 10.1038/s41370-024-00712-8. Epub 2024 Sep 6.
4
The Chilean exposome-based system for ecosystems (CHiESS): a framework for national data integration and analytics platform.
Front Public Health. 2024 Jul 24;12:1407514. doi: 10.3389/fpubh.2024.1407514. eCollection 2024.
6
Heterogeneous associations of multiplexed environmental factors and multidimensional aging metrics.
Nat Commun. 2024 Jun 10;15(1):4921. doi: 10.1038/s41467-024-49283-0.
7
Lifetime residential data collection protocol for the Adolescent Brain Cognitive Development (ABCD) Study.
MethodsX. 2024 Apr 3;12:102673. doi: 10.1016/j.mex.2024.102673. eCollection 2024 Jun.
8
Geospatial Science for the Environmental Epidemiology of Cancer in the Exposome Era.
Cancer Epidemiol Biomarkers Prev. 2024 Apr 3;33(4):451-460. doi: 10.1158/1055-9965.EPI-23-1237.
10
Spatial scale effects on associations between built environment and cognitive function: Multi-Ethnic Study of Atherosclerosis.
Health Place. 2024 Mar;86:103181. doi: 10.1016/j.healthplace.2024.103181. Epub 2024 Feb 9.

本文引用的文献

1
Enhancing Data Integration, Interoperability, and Reuse to Address Complex and Emerging Environmental Health Problems.
Environ Sci Technol. 2022 Jun 21;56(12):7544-7552. doi: 10.1021/acs.est.1c08383. Epub 2022 May 12.
2
Machine Learning Models for Predicting the Occurrence of Respiratory Diseases Using Climatic and Air-Pollution Factors.
Clin Exp Otorhinolaryngol. 2022 May;15(2):168-176. doi: 10.21053/ceo.2021.01536. Epub 2022 Jan 7.
3
Bayesian multiple index models for environmental mixtures.
Biometrics. 2023 Mar;79(1):462-474. doi: 10.1111/biom.13569. Epub 2021 Oct 12.
4
Semantic standards of external exposome data.
Environ Res. 2021 Jun;197:111185. doi: 10.1016/j.envres.2021.111185. Epub 2021 Apr 24.
5
Model choice for estimating the association between exposure to chemical mixtures and health outcomes: A simulation study.
PLoS One. 2021 Mar 25;16(3):e0249236. doi: 10.1371/journal.pone.0249236. eCollection 2021.
6
An external exposome-wide association study of COVID-19 mortality in the United States.
Sci Total Environ. 2021 May 10;768:144832. doi: 10.1016/j.scitotenv.2020.144832. Epub 2021 Jan 7.
8
Geospatial Analysis of Neighborhood Deprivation Index (NDI) for the United States by County.
J Maps. 2020;16(1):101-112. doi: 10.1080/17445647.2020.1750066. Epub 2020 Apr 15.
9
Early-Life Environmental Exposures and Childhood Obesity: An Exposome-Wide Approach.
Environ Health Perspect. 2020 Jun;128(6):67009. doi: 10.1289/EHP5975. Epub 2020 Jun 24.
10
An external exposome-wide association study of hypertensive disorders of pregnancy.
Environ Int. 2020 Aug;141:105797. doi: 10.1016/j.envint.2020.105797. Epub 2020 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验