Hu Hui, Liu Xiaokang, Zheng Yi, He Xing, Hart Jaime, James Peter, Laden Francine, Chen Yong, Bian Jiang
Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.
Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Crit Rev Environ Sci Technol. 2023;53(7):827-846. doi: 10.1080/10643389.2022.2093595. Epub 2022 Jul 4.
The concept of the exposome encompasses the totality of exposures from a variety of external and internal sources across an individual's life course. The wealth of existing spatial and contextual data makes it appealing to characterize individuals' external exposome to advance our understanding of environmental determinants of health. However, the spatial and contextual exposome is very different from other exposome factors measured at the individual-level as spatial and contextual exposome data are more heterogenous with unique correlation structures and various spatiotemporal scales. These distinctive characteristics lead to multiple unique methodological challenges across different stages of a study. This article provides a review of the existing resources, methods, and tools in the new and developing field for spatial and contextual exposome-health studies focusing on four areas: (1) data engineering, (2) spatiotemporal data linkage, (3) statistical methods for exposome-health association studies, and (4) machine- and deep-learning methods to use spatial and contextual exposome data for disease prediction. A critical analysis of the methodological challenges involved in each of these areas is performed to identify knowledge gaps and address future research needs.
暴露组的概念涵盖了个体生命历程中来自各种外部和内部来源的所有暴露。现有的丰富空间和背景数据使得刻画个体的外部暴露组以增进我们对健康的环境决定因素的理解变得颇具吸引力。然而,空间和背景暴露组与在个体层面测量的其他暴露组因素非常不同,因为空间和背景暴露组数据具有更异质性,具有独特的相关结构和各种时空尺度。这些独特的特征在研究的不同阶段带来了多个独特的方法学挑战。本文综述了空间和背景暴露组-健康研究这一新兴领域中的现有资源、方法和工具,重点关注四个领域:(1)数据工程,(2)时空数据链接,(3)暴露组-健康关联研究的统计方法,以及(4)使用空间和背景暴露组数据进行疾病预测的机器学习和深度学习方法。对这些领域中涉及的方法学挑战进行了批判性分析,以识别知识空白并满足未来的研究需求。