Suppr超能文献

河马通路和Rho通路的解偶联使巨核细胞能够逃避四倍体检查点。

Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint.

作者信息

Roy Anita, Lordier Larissa, Pioche-Durieu Catherine, Souquere Sylvie, Roy Lydia, Rameau Philippe, Lapierre Valérie, Le Cam Eric, Plo Isabelle, Debili Najet, Raslova Hana, Vainchenker William

机构信息

Institut National de la Santé et la Recherche Médicale (INSERM) UMR1170, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Villejuif, France.

Université Paris-Saclay, Villejuif, France.

出版信息

Haematologica. 2016 Dec;101(12):1469-1478. doi: 10.3324/haematol.2016.149914. Epub 2016 Aug 11.

Abstract

Megakaryocytes are naturally polyploid cells that increase their ploidy by endomitosis. However, very little is known regarding the mechanism by which they escape the tetraploid checkpoint to become polyploid. Recently, it has been shown that the tetraploid checkpoint was regulated by the Hippo-p53 pathway in response to a downregulation of Rho activity. We therefore analyzed the role of Hippo-p53 pathway in the regulation of human megakaryocyte polyploidy. Our results revealed that Hippo-p53 signaling pathway proteins are present and are functional in megakaryocytes. Although this pathway responds to the genotoxic stress agent etoposide, it is not activated in tetraploid or polyploid megakaryocytes. Furthermore, Hippo pathway was observed to be uncoupled from Rho activity. Additionally, polyploid megakaryocytes showed increased expression of YAP target genes when compared to diploid and tetraploid megakaryocytes. Although p53 knockdown increased both modal ploidy and proplatelet formation in megakaryocytes, YAP knockdown caused no significant change in ploidy while moderately affecting proplatelet formation. Interestingly, YAP knockdown reduced the mitochondrial mass in polyploid megakaryocytes and decreased expression of PGC1α, an important mitochondrial biogenesis regulator. Thus, the Hippo pathway is functional in megakaryocytes, but is not induced by tetraploidy. Additionally, YAP regulates the mitochondrial mass in polyploid megakaryocytes.

摘要

巨核细胞是天然的多倍体细胞,通过核内有丝分裂增加其倍性。然而,关于它们如何逃避四倍体检查点而成为多倍体的机制,人们知之甚少。最近的研究表明,四倍体检查点受Hippo-p53通路调控,以响应Rho活性的下调。因此,我们分析了Hippo-p53通路在人类巨核细胞多倍体调控中的作用。我们的结果显示,Hippo-p53信号通路蛋白在巨核细胞中存在且具有功能。尽管该通路对基因毒性应激剂依托泊苷有反应,但在四倍体或多倍体巨核细胞中并未被激活。此外,观察到Hippo通路与Rho活性解偶联。另外,与二倍体和四倍体巨核细胞相比,多倍体巨核细胞中YAP靶基因的表达增加。虽然p53基因敲低增加了巨核细胞的模式倍性和前血小板形成,但YAP基因敲低对倍性没有显著影响,同时对前血小板形成有中度影响。有趣的是,YAP基因敲低降低了多倍体巨核细胞中的线粒体质量,并降低了重要的线粒体生物发生调节因子PGC1α的表达。因此,Hippo通路在巨核细胞中具有功能,但不受四倍体诱导。此外,YAP调节多倍体巨核细胞中的线粒体质量。

相似文献

1
Uncoupling of the Hippo and Rho pathways allows megakaryocytes to escape the tetraploid checkpoint.
Haematologica. 2016 Dec;101(12):1469-1478. doi: 10.3324/haematol.2016.149914. Epub 2016 Aug 11.
2
The Hippo pathway regulates human megakaryocytic differentiation.
Thromb Haemost. 2017 Jan 5;117(1):116-126. doi: 10.1160/TH16-07-0564. Epub 2016 Oct 27.
3
Proplatelet formation is regulated by the Rho/ROCK pathway.
Blood. 2007 May 15;109(10):4229-36. doi: 10.1182/blood-2006-04-020024. Epub 2007 Jan 23.
5
6
Megakaryocyte and polyploidization.
Exp Hematol. 2018 Jan;57:1-13. doi: 10.1016/j.exphem.2017.10.001. Epub 2017 Oct 27.
7
Effect of YAP/TAZ on megakaryocyte differentiation and platelet production.
Biosci Rep. 2020 Aug 28;40(8). doi: 10.1042/BSR20201780.
8
miRNA 146b mediates the regulation of nucleolar size and activity in polyploid megakaryocytes.
Biol Cell. 2021 Feb;113(2):118-129. doi: 10.1111/boc.202000022. Epub 2020 Dec 28.
9
MAL/SRF complex is involved in platelet formation and megakaryocyte migration by regulating MYL9 (MLC2) and MMP9.
Blood. 2009 Nov 5;114(19):4221-32. doi: 10.1182/blood-2009-03-209932. Epub 2009 Sep 1.
10
Cytokinesis failure triggers hippo tumor suppressor pathway activation.
Cell. 2014 Aug 14;158(4):833-848. doi: 10.1016/j.cell.2014.06.029.

引用本文的文献

1
Macrophage-Derived Type 1 IFN, Renal Tubular Epithelial Cell Polyploidization, and AKI-to-CKD Transition.
J Am Soc Nephrol. 2025 May 1;36(5):766-780. doi: 10.1681/ASN.0000000577. Epub 2024 Dec 11.
3
Emerging role of Hippo pathway in the regulation of hematopoiesis.
BMB Rep. 2023 Aug;56(8):417-425. doi: 10.5483/BMBRep.2023-0094.
4
Whole-Genome Doubling as a source of cancer: how, when, where, and why?
Front Cell Dev Biol. 2023 Jun 5;11:1209136. doi: 10.3389/fcell.2023.1209136. eCollection 2023.
5
The antagonistic relationship between apoptosis and polyploidy in development and cancer.
Semin Cell Dev Biol. 2024 Mar 15;156:35-43. doi: 10.1016/j.semcdb.2023.05.009. Epub 2023 Jun 16.
6
Dual role of EZH2 in megakaryocyte differentiation.
Blood. 2021 Oct 28;138(17):1603-1614. doi: 10.1182/blood.2019004638.
7
Role of Rho-GTPases in megakaryopoiesis.
Small GTPases. 2021 Sep-Nov;12(5-6):399-415. doi: 10.1080/21541248.2021.1885134. Epub 2021 Feb 11.
9
BMP2K dysregulation promotes abnormal megakaryopoiesis in acute megakaryoblastic leukemia.
Cell Biosci. 2020 Apr 15;10:57. doi: 10.1186/s13578-020-00418-y. eCollection 2020.

本文引用的文献

1
P53 activation inhibits all types of hematopoietic progenitors and all stages of megakaryopoiesis.
Oncotarget. 2016 May 31;7(22):31980-92. doi: 10.18632/oncotarget.7881.
2
p53 suppresses tetraploid development in mice.
Sci Rep. 2015 Mar 10;5:8907. doi: 10.1038/srep08907.
3
The Hippo pathway regulates hematopoiesis in Drosophila melanogaster.
Curr Biol. 2014 Nov 17;24(22):2673-80. doi: 10.1016/j.cub.2014.10.031. Epub 2014 Oct 30.
4
Yorkie and Scalloped signaling regulates Notch-dependent lineage specification during Drosophila hematopoiesis.
Curr Biol. 2014 Nov 17;24(22):2665-72. doi: 10.1016/j.cub.2014.09.081. Epub 2014 Oct 30.
5
PGC-1α mediates mitochondrial biogenesis and oxidative phosphorylation in cancer cells to promote metastasis.
Nat Cell Biol. 2014 Oct;16(10):992-1003, 1-15. doi: 10.1038/ncb3039. Epub 2014 Sep 21.
6
Cytokinesis failure triggers hippo tumor suppressor pathway activation.
Cell. 2014 Aug 14;158(4):833-848. doi: 10.1016/j.cell.2014.06.029.
7
Mitoquinone restores platelet production in irradiation-induced thrombocytopenia.
Platelets. 2015;26(5):459-66. doi: 10.3109/09537104.2014.935315. Epub 2014 Jul 15.
8
Mitochondria: biological roles in platelet physiology and pathology.
Int J Biochem Cell Biol. 2014 May;50:156-60. doi: 10.1016/j.biocel.2014.02.015. Epub 2014 Feb 22.
9
Tolerance of whole-genome doubling propagates chromosomal instability and accelerates cancer genome evolution.
Cancer Discov. 2014 Feb;4(2):175-185. doi: 10.1158/2159-8290.CD-13-0285. Epub 2014 Jan 19.
10
Activation of p53 by the MDM2 inhibitor RG7112 impairs thrombopoiesis.
Exp Hematol. 2014 Feb;42(2):137-45.e5. doi: 10.1016/j.exphem.2013.11.012. Epub 2013 Dec 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验