Suppr超能文献

凋亡与多倍体在发育和癌症中的拮抗关系。

The antagonistic relationship between apoptosis and polyploidy in development and cancer.

机构信息

Department of Biology, Indiana University, Bloomington, IN 47405, USA.

Department of Biology, Indiana University, Bloomington, IN 47405, USA.

出版信息

Semin Cell Dev Biol. 2024 Mar 15;156:35-43. doi: 10.1016/j.semcdb.2023.05.009. Epub 2023 Jun 16.

Abstract

One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.

摘要

细胞程序性死亡的一个重要功能是防止细胞不恰当地获得额外的基因组拷贝,这种状态被称为多倍体。细胞凋亡是防止多倍体形成的主要细胞死亡机制,而这种凋亡反应的缺陷可能导致多倍体细胞,其随后易错的染色体分离是基因组不稳定性和癌症进展的主要原因。相反,一些细胞主动抑制细胞凋亡以成为多倍体,这是正常发育或再生的一部分。因此,尽管细胞凋亡可以防止多倍体的形成,但多倍体状态也可以主动抑制细胞凋亡。在这篇综述中,我们讨论了在发育和癌症中理解细胞凋亡和多倍体之间拮抗关系的进展。尽管最近取得了一些进展,但一个关键的结论是,关于将细胞凋亡与多倍体细胞周期联系起来的机制,我们仍然知之甚少。我们认为,在发育和癌症中细胞凋亡的调控之间进行类比,可能有助于填补这一知识空白,并导致更有效的治疗方法。

相似文献

1
The antagonistic relationship between apoptosis and polyploidy in development and cancer.
Semin Cell Dev Biol. 2024 Mar 15;156:35-43. doi: 10.1016/j.semcdb.2023.05.009. Epub 2023 Jun 16.
2
From polyploidy to aneuploidy, genome instability and cancer.
Nat Rev Mol Cell Biol. 2004 Jan;5(1):45-54. doi: 10.1038/nrm1276.
3
Centrosomes, polyploidy and cancer.
Adv Exp Med Biol. 2010;676:93-103. doi: 10.1007/978-1-4419-6199-0_6.
4
Polyploid mitosis and depolyploidization promote chromosomal instability and tumor progression in a Notch-induced tumor model.
Dev Cell. 2021 Jul 12;56(13):1976-1988.e4. doi: 10.1016/j.devcel.2021.05.017. Epub 2021 Jun 18.
5
Cancer regeneration: Polyploid cells are the key drivers of tumor progression.
Biochim Biophys Acta Rev Cancer. 2020 Dec;1874(2):188408. doi: 10.1016/j.bbcan.2020.188408. Epub 2020 Aug 20.
6
Endoreplication and polyploidy: insights into development and disease.
Development. 2013 Jan 1;140(1):3-12. doi: 10.1242/dev.080531.
8
Survival of aneuploid, micronucleated and/or polyploid cells: crosstalk between ploidy control and apoptosis.
Mutat Res. 2008 Mar 12;651(1-2):30-9. doi: 10.1016/j.mrgentox.2007.10.016. Epub 2007 Nov 9.
9
Ploidy changes and genome stability in yeast.
Yeast. 2014 Nov;31(11):421-30. doi: 10.1002/yea.3037. Epub 2014 Sep 3.
10
Transient endoreplication down-regulates the kinesin-14 HSET and contributes to genomic instability.
Mol Biol Cell. 2016 Oct 1;27(19):2911-23. doi: 10.1091/mbc.E16-03-0159. Epub 2016 Aug 3.

引用本文的文献

4
An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc.
PLoS Genet. 2024 Sep 3;20(9):e1011387. doi: 10.1371/journal.pgen.1011387. eCollection 2024 Sep.
5
Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation.
Front Cell Dev Biol. 2024 Jul 11;12:1410637. doi: 10.3389/fcell.2024.1410637. eCollection 2024.
10
Polyploid Cancer Cell Models in Drosophila.
Genes (Basel). 2024 Jan 14;15(1):96. doi: 10.3390/genes15010096.

本文引用的文献

1
Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication.
Cell. 2023 Feb 2;186(3):528-542.e14. doi: 10.1016/j.cell.2022.12.036. Epub 2023 Jan 20.
2
Impact of polyploidy on plant tolerance to abiotic and biotic stresses.
Front Plant Sci. 2022 Aug 22;13:869423. doi: 10.3389/fpls.2022.869423. eCollection 2022.
3
Implications of Polyploidy and Ploidy Alterations in Hepatocytes in Liver Injuries and Cancers.
Int J Mol Sci. 2022 Aug 20;23(16):9409. doi: 10.3390/ijms23169409.
4
Centriole signaling restricts hepatocyte ploidy to maintain liver integrity.
Genes Dev. 2022 Aug 18;36(13-14):843-56. doi: 10.1101/gad.349727.122.
5
Ordered and deterministic cancer genome evolution after p53 loss.
Nature. 2022 Aug;608(7924):795-802. doi: 10.1038/s41586-022-05082-5. Epub 2022 Aug 17.
6
Catastrophic DNA replication in unscheduled tetraploid cells.
Trends Genet. 2022 Aug;38(8):787-788. doi: 10.1016/j.tig.2022.04.005. Epub 2022 Apr 27.
7
Genetic instability from a single S phase after whole-genome duplication.
Nature. 2022 Apr;604(7904):146-151. doi: 10.1038/s41586-022-04578-4. Epub 2022 Mar 30.
8
Polyploid cardiomyocytes: implications for heart regeneration.
Development. 2021 Jul 15;148(14). doi: 10.1242/dev.199401. Epub 2021 Jul 26.
9
Paradoxical implication of BAX/BAK in the persistence of tetraploid cells.
Cell Death Dis. 2021 Nov 1;12(11):1039. doi: 10.1038/s41419-021-04321-3.
10
Polyploid giant cancer cells: An emerging new field of cancer biology.
Semin Cancer Biol. 2022 Jun;81:1-4. doi: 10.1016/j.semcancer.2021.10.006. Epub 2021 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验