Suppr超能文献

大数据会催生新的数学吗?与神经科学不断发展的协同作用。

Will big data yield new mathematics? An evolving synergy with neuroscience.

作者信息

Feng S, Holmes P

机构信息

Department of Applied Mathematics and Sciences, Khalifa University of Science, Technology, and Research, Abu Dhabi, United Arab Emirates.

Program in Applied and Computational Mathematics, Department of Mechanical and Aerospace Engineering and Princeton Neuroscience Institute, Princeton University, NJ 08544.

出版信息

IMA J Appl Math. 2016 Jun;81(3):432-456. doi: 10.1093/imamat/hxw026. Epub 2016 Jul 11.

Abstract

New mathematics has often been inspired by new insights into the natural world. Here we describe some ongoing and possible future interactions among the massive data sets being collected in neuroscience, methods for their analysis and mathematical models of the underlying, still largely uncharted neural substrates that generate these data. We start by recalling events that occurred in turbulence modelling when substantial space-time velocity field measurements and numerical simulations allowed a new perspective on the governing equations of fluid mechanics. While no analogous global mathematical model of neural processes exists, we argue that big data may enable validation or at least rejection of models at cellular to brain area scales and may illuminate connections among models. We give examples of such models and survey some relatively new experimental technologies, including optogenetics and functional imaging, that can report neural activity in live animals performing complex tasks. The search for analytical techniques for these data is already yielding new mathematics, and we believe their multi-scale nature may help relate well-established models, such as the Hodgkin-Huxley equations for single neurons, to more abstract models of neural circuits, brain areas and larger networks within the brain. In brief, we envisage a closer liaison, if not a marriage, between neuroscience and mathematics.

摘要

新数学常常受到对自然世界新见解的启发。在此,我们描述神经科学中正在收集的海量数据集、其分析方法以及产生这些数据的潜在的、仍很大程度上未知的神经基质的数学模型之间一些正在进行的以及未来可能的相互作用。我们首先回顾湍流建模中发生的事件,当时大量时空速度场测量和数值模拟为流体力学的控制方程带来了新视角。虽然不存在类似的神经过程全局数学模型,但我们认为大数据可能在细胞到脑区尺度上验证或至少否定模型,并可能阐明模型之间的联系。我们给出此类模型的示例,并概述一些相对较新的实验技术,包括光遗传学和功能成像,这些技术可以报告执行复杂任务的活体动物的神经活动。对这些数据的分析技术的探索已经产生了新数学,并且我们相信它们的多尺度性质可能有助于将诸如单个神经元的霍奇金 - 赫胥黎方程等成熟模型与神经回路、脑区和大脑中更大网络的更抽象模型联系起来。简而言之,我们设想神经科学与数学之间建立更紧密的联系,即便不是联姻。

相似文献

4
NeuroBox: Computational Mathematics in Multiscale Neuroscience.神经盒:多尺度神经科学中的计算数学
Comput Vis Sci. 2019 Sep;20(3-6):111-124. doi: 10.1007/s00791-019-00314-0. Epub 2019 Jun 14.
9
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

本文引用的文献

1
Functional divisions for visual processing in the central brain of flying Drosophila.飞行果蝇中枢脑中视觉处理的功能分区。
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):E5523-32. doi: 10.1073/pnas.1514415112. Epub 2015 Aug 31.
3
A Multi-Area Stochastic Model for a Covert Visual Search Task.一种用于隐蔽视觉搜索任务的多区域随机模型。
PLoS One. 2015 Aug 19;10(8):e0136097. doi: 10.1371/journal.pone.0136097. eCollection 2015.
5
An investigation of the false discovery rate and the misinterpretation of p-values.对错误发现率和p值误读的调查。
R Soc Open Sci. 2014 Nov 19;1(3):140216. doi: 10.1098/rsos.140216. eCollection 2014 Nov.
6
Past, present and future of spike sorting techniques.尖峰分类技术的过去、现在与未来。
Brain Res Bull. 2015 Oct;119(Pt B):106-17. doi: 10.1016/j.brainresbull.2015.04.007. Epub 2015 Apr 27.
9
Brain network adaptability across task states.跨任务状态的脑网络适应性。
PLoS Comput Biol. 2015 Jan 8;11(1):e1004029. doi: 10.1371/journal.pcbi.1004029. eCollection 2015 Jan.
10
Light-sheet imaging for systems neuroscience.用于系统神经科学的光片成像
Nat Methods. 2015 Jan;12(1):27-9. doi: 10.1038/nmeth.3214.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验