聚(ADP - 核糖)糖水解酶介导氧化和兴奋性毒性神经元死亡。
Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death.
作者信息
Ying W, Sevigny M B, Chen Y, Swanson R A
机构信息
Department of Neurology, University of California at San Francisco and Veterans Affairs Medical Center, 4150 Clement Street, San Francisco, CA 94121, USA.
出版信息
Proc Natl Acad Sci U S A. 2001 Oct 9;98(21):12227-32. doi: 10.1073/pnas.211202598.
Excessive activation of poly(ADP-ribose) polymerase 1 (PARP1) leads to NAD(+) depletion and cell death during ischemia and other conditions that generate extensive DNA damage. When activated by DNA strand breaks, PARP1 uses NAD(+) as substrate to form ADP-ribose polymers on specific acceptor proteins. These polymers are in turn rapidly degraded by poly(ADP-ribose) glycohydrolase (PARG), a ubiquitously expressed exo- and endoglycohydrolase. In this study, we examined the role of PARG in the PARP1-mediated cell death pathway. Mouse neuron and astrocyte cultures were exposed to hydrogen peroxide, N-methyl-d-aspartate (NMDA), or the DNA alkylating agent, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Cell death in each condition was markedly reduced by the PARP1 inhibitor benzamide and equally reduced by the PARG inhibitors gallotannin and nobotanin B. The PARP1 inhibitor benzamide and the PARG inhibitor gallotannin both prevented the NAD(+) depletion that otherwise results from PARP1 activation by MNNG or H(2)O(2). However, these agents had opposite effects on protein poly(ADP-ribosyl)ation. Immunostaining for poly(ADP-ribose) on Western blots and neuron cultures showed benzamide to decrease and gallotannin to increase poly(ADP-ribose) accumulation during MNNG exposure. These results suggest that PARG inhibitors do not inhibit PARP1 directly, but instead prevent PARP1-mediated cell death by slowing the turnover of poly(ADP-ribose) and thus slowing NAD(+) consumption. PARG appears to be a necessary component of the PARP-mediated cell death pathway, and PARG inhibitors may have promise as neuroprotective agents.
在缺血及其他导致广泛DNA损伤的情况下,聚(ADP - 核糖)聚合酶1(PARP1)的过度激活会导致NAD⁺耗竭和细胞死亡。当被DNA链断裂激活时,PARP1利用NAD⁺作为底物,在特定的受体蛋白上形成ADP - 核糖聚合物。这些聚合物继而被聚(ADP - 核糖)糖苷水解酶(PARG)迅速降解,PARG是一种广泛表达的外切和内切糖苷水解酶。在本研究中,我们研究了PARG在PARP1介导的细胞死亡途径中的作用。将小鼠神经元和星形胶质细胞培养物暴露于过氧化氢、N - 甲基 - D - 天冬氨酸(NMDA)或DNA烷化剂N - 甲基 - N'-硝基 - N - 亚硝基胍(MNNG)。在每种情况下,PARP1抑制剂苯甲酰胺可显著减少细胞死亡,PARG抑制剂五倍子单宁和诺博他宁B也同样能减少细胞死亡。PARP1抑制剂苯甲酰胺和PARG抑制剂五倍子单宁均能防止因MNNG或H₂O₂激活PARP1而导致的NAD⁺耗竭。然而,这些试剂对蛋白质聚(ADP - 核糖)化有相反的影响。蛋白质印迹和神经元培养物上聚(ADP - 核糖)的免疫染色显示,在MNNG暴露期间,苯甲酰胺会减少而五倍子单宁会增加聚(ADP - 核糖)的积累。这些结果表明,PARG抑制剂并非直接抑制PARP1,而是通过减缓聚(ADP - 核糖)的周转从而减缓NAD⁺消耗来防止PARP1介导的细胞死亡。PARG似乎是PARP介导的细胞死亡途径的一个必要组成部分,PARG抑制剂有望成为神经保护剂。