Clinical Treatment Research Branch, Division of Clinical and Treatment Research, National Institute of Mental Health, 5600 Fishers Lane, Room 18-105, Rockville, Maryland, MD 20857, USA.
Section on Clinical Pharmacology, Experimental Therapeutics Branch, National Institute of Mental Health, Bethesda, Maryland, USA.
CNS Drugs. 1997 Apr;7(4):273-312. doi: 10.2165/00023210-199707040-00003.
Recognition of the role of active metabolites in mediating therapeutic and/or adverse effects of many antidepressants is an important part of understanding the mechanisms of action of these medications. While virtually all antidepressants except lithium undergo extensive hepatic metabolism, the profile of activity of the resulting breakdown products varies considerably.The metabolites of some antidepressants share the primary biochemical actions of their parent compounds and appear to contribute to the therapeutic efficacy of those medications. Examples of this are the tricyclic antidepressant (TCA) nor-triptyline, the selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor (SSRI) fluoxetine and the serotonin-noradrenaline (norepinephrine) reuptake inhibitor venlafaxine. Less commonly, the activity of the primary metabolite may differ from that of the parent drug. An example is clomipramine. This drug is a potent serotonin reuptake blocking TCA, but its demethyl-metabolites are noradrenaline reuptake inhibitors. On the other hand, a number of effective anti-depressants, including most of the SSRIs other than fluoxetine, lack active metabolites.On the negative side, antidepressant metabolites may add to the adverse effect burden presented by their drugs of origin. At sufficiently high doses, the amphetamines resulting from the metabolism of some monoamine oxidase inhibitors, e.g. selegiline (deprenyl), may directly produce toxicity from the pharmacodynamic interaction with the parent antidepressant. While hydroxy-nortriptyline produces lesser anticholinergic effects than its parent compound, this metabolite may block the therapeutic action of nortriptyline when present in high concentrations. Excessive plasma concentrations of the major metabolite of amfebutamone (bupropion) have been associated with nonresponse and clinical worsening in some patients.Amfebutamone also illustrates the importance of pharmacokinetic factors in determining the magnitude of the influence of metabolites on antidepressant action. Active metabolites that have long elimination half-lives may predominate over the parent compound in plasma and CSF, exerting considerable clinical impact. With several of the newer drugs, notably amfebutamone, venlafaxine and nefazodone, the presence of active metabolites with half-lives approaching 1 day suggests that once-daily administration may be sufficient.The formation of most antidepressant metabolites is under strong genetic control and the metabolites themselves often exert effects on hepatic enzyme systems. This can lead to the possibility of drug-drug interactions. A key example is norfluoxetine, which is associated with potent inhibition of the cytochrome P450 isozyme 2D6 (and, consequently, reduced metabolism of drugs such as TCAs). This effect lasts for weeks even after fluoxetine discontinuation, due to the fact that norfluoxetine has a half-life of up to 2 weeks.The clearance of most antidepressant metabolites is ultimately dependent on elimination by the kidneys. Therefore, these substances tend to accumulate in states of reduced renal function, including normal aging. The relative increase in TCA hydroxy-metabolite concentrations in the elderly may contribute to the cardiovascular and other toxicities of these antidepressants in this vulnerable patient population.Attention to the existence and implications of active metabolites from the earliest stages of antidepressant drug development may help optimise the benefit: risk ratio of this valuable class of psychotropic medications.
认识到许多抗抑郁药的治疗和/或不良反应的活性代谢物的作用是理解这些药物作用机制的重要组成部分。虽然除了锂之外,几乎所有的抗抑郁药都要经过广泛的肝脏代谢,但由此产生的分解产物的活性特征却有很大的不同。一些抗抑郁药的代谢物具有与其母体化合物相同的主要生化作用,并且似乎对这些药物的治疗效果有贡献。三环抗抑郁药(TCA)去甲替林、选择性 5-羟色胺(5-HT)再摄取抑制剂(SSRI)氟西汀和 5-羟色胺-去甲肾上腺素(去甲肾上腺素)再摄取抑制剂文拉法辛就是这种情况的例子。不那么常见的是,主要代谢物的活性可能与母体药物不同。一个例子是氯米帕明。这种药物是一种有效的 5-HT 再摄取阻断 TCA,但它的脱甲基代谢物是去甲肾上腺素再摄取抑制剂。另一方面,许多有效的抗抑郁药,包括除氟西汀以外的大多数 SSRI,都没有活性代谢物。从负面来看,抗抑郁药的代谢物可能会增加其来源药物带来的不良反应负担。在足够高的剂量下,一些单胺氧化酶抑制剂(如司来吉兰(deprenyl))代谢产生的安非他命可能会直接与母体抗抑郁药产生药效学相互作用,从而产生毒性。虽然羟去甲替林比其母体化合物产生的抗胆碱能作用小,但当这种代谢物在高浓度存在时,它可能会阻断去甲替林的治疗作用。安非他酮的主要代谢物的血浆浓度过高与一些患者的无反应和临床恶化有关。安非他酮还说明了药代动力学因素在确定代谢物对抗抑郁药作用的影响程度方面的重要性。半衰期长的活性代谢物可能在血浆和 CSF 中超过母体化合物占主导地位,从而产生相当大的临床影响。对于一些新型药物,特别是安非他酮、文拉法辛和奈法唑酮,半衰期接近 1 天的活性代谢物的存在表明,每日一次给药可能就足够了。大多数抗抑郁药代谢物的形成受强烈的遗传控制,代谢物本身往往对肝酶系统有影响。这可能导致药物相互作用的可能性。一个关键的例子是去甲氟西汀,它与细胞色素 P450 同工酶 2D6 的强烈抑制(因此,降低了三环类抗抑郁药等药物的代谢)有关。即使在氟西汀停药后,这种作用也会持续数周,因为去甲氟西汀的半衰期长达 2 周。大多数抗抑郁药代谢物的清除最终依赖于肾脏的排泄。因此,这些物质往往在肾功能降低的情况下(包括正常衰老)积累。在这个脆弱的患者群体中,老年 TCA 羟代谢物浓度的相对增加可能导致这些抗抑郁药的心血管和其他毒性。从抗抑郁药药物开发的早期阶段就注意到活性代谢物的存在及其影响,可能有助于优化这类有价值的精神药物的获益/风险比。