Bajzer Z, Myers A C, Sedarous S S, Prendergast F G
Department of Biochemistry and Molecular Biology, Mayo Foundation, Rochester, Minnesota 55905.
Biophys J. 1989 Jul;56(1):79-93. doi: 10.1016/S0006-3495(89)82653-0.
This novel approach to the analysis of multiexponential functions is based on the combined use of the Laplace transform and Padé approximants (Yeramian, E., and P. Claverie. 1987. Nature (Lond.). 326:169-174). It is similar in principle to the well-known Isenberg method of moments (Isenberg, I. 1983. Biophys. J. 43:141-148) traditionally applied to the analysis of fluorescence decay. The advantage of the Padé-Laplace method lies in its ability to detect the number of components in a multiexponential function as well as their parameters. In this paper we modified the original method so that it can be applied to the analysis of multifrequency phase/modulation measurements of fluorescence decay. The method was tested first on simulated data. It afforded recovery up to four distinct lifetime components (and their fractional contributions). In the case of simulated data corresponding to continuous lifetime distributions (nonexponential decay), the results of the analysis by the Padé-Laplace method indicated the absence of discrete exponential components. The method was also applied to real phase/modulation data gathered on known fluorophores and their mixtures and on tryptophan fluorescence in phospholipase A2. The lifetime and fraction recoveries were consistent with those obtained from standard methods involving nonlinear least-square fitting.
这种分析多指数函数的新方法基于拉普拉斯变换和帕德近似的联合使用(耶拉米安,E.,和P. 克拉韦里。1987年。《自然》(伦敦)。326:169 - 174)。其原理与传统上用于荧光衰减分析的著名的伊森伯格矩量法(伊森伯格,I. 1983年。《生物物理杂志》。43:141 - 148)相似。帕德 - 拉普拉斯方法的优点在于它能够检测多指数函数中的成分数量及其参数。在本文中,我们对原始方法进行了修改,使其能够应用于荧光衰减的多频率相位/调制测量分析。该方法首先在模拟数据上进行了测试。它能够恢复多达四个不同的寿命成分(及其分数贡献)。在对应于连续寿命分布(非指数衰减)的模拟数据情况下,帕德 - 拉普拉斯方法的分析结果表明不存在离散的指数成分。该方法还应用于收集到的已知荧光团及其混合物以及磷脂酶A2中色氨酸荧光的实际相位/调制数据。寿命和分数恢复与通过涉及非线性最小二乘拟合的标准方法获得的结果一致。