Suppr超能文献

荧光报告分析揭示了 Magnaporthe oryzae 的无毒效应因子 AVR-Pia 的表达时间和定位。

Fluorescent reporter analysis revealed the timing and localization of AVR-Pia expression, an avirulence effector of Magnaporthe oryzae.

机构信息

Graduation School of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 060-8589, Japan.

出版信息

Mol Plant Pathol. 2017 Oct;18(8):1138-1149. doi: 10.1111/mpp.12468. Epub 2016 Nov 8.

Abstract

In order to facilitate infection, the rice blast pathogen Magnaporthe oryzae secretes an abundance of proteins, including avirulence effectors, to diminish its host's defences. Avirulence effectors are recognized by host resistance proteins and trigger the host's hypersensitive response, which is a rapid and effective form of innate plant immunity. An understanding of the underlying molecular mechanisms of such interactions is crucial for the development of strategies to control disease. However, the expression and secretion of certain effector proteins, such as AVR-Pia, have yet to be reported. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that AVR-Pia was only expressed during infection. Fluorescently labelled AVR-Pia indicated that AVR-Pia expression was induced during appressorial differentiation in the cells of both rice and onion, as well as in a penetration-deficient (Δpls1) mutant capable of developing melanized appressoria, but unable to penetrate host cells, suggesting that AVR-Pia expression is independent of fungal penetration. Using live-cell imaging, we also documented the co-localization of green fluorescent protein (GFP)-labelled AVR-Pia and monomeric red fluorescent protein (mRFP)-labelled PWL2, which indicates that AVR-Pia accumulates in biotrophic interfacial complexes before being delivered to the plant cytosol. Together, these results suggest that AVR-Pia is a cytoplasmic effector that is expressed at the onset of appressorial differentiation and is translocated to the biotrophic interfacial complex, and then into the host's cytoplasm.

摘要

为了便于感染,稻瘟病菌 Magnaporthe oryzae 会分泌大量蛋白质,包括无毒效应子,以削弱其宿主的防御能力。无毒效应子被宿主抗性蛋白识别,并触发宿主的过敏反应,这是一种快速有效的先天植物免疫形式。了解这些相互作用的潜在分子机制对于开发控制疾病的策略至关重要。然而,某些效应蛋白(如 AVR-Pia)的表达和分泌尚未得到报道。逆转录-聚合酶链反应(RT-PCR)显示,AVR-Pia 仅在感染期间表达。荧光标记的 AVR-Pia 表明,AVR-Pia 在稻和洋葱细胞的附着胞分化过程中以及在穿透缺陷(Δpls1)突变体中被诱导表达,该突变体能够形成黑化的附着胞,但无法穿透宿主细胞,这表明 AVR-Pia 的表达与真菌穿透无关。通过活细胞成像,我们还记录了绿色荧光蛋白(GFP)标记的 AVR-Pia 和单体红色荧光蛋白(mRFP)标记的 PWL2 的共定位,这表明 AVR-Pia 在被输送到植物细胞质之前,在生物营养界面复合物中积累。综上所述,这些结果表明 AVR-Pia 是一种细胞质效应子,它在附着胞分化开始时表达,并被转运到生物营养界面复合物,然后进入宿主的细胞质。

相似文献

3
Recent advances in rice blast effector research.
Curr Opin Plant Biol. 2010 Aug;13(4):434-41. doi: 10.1016/j.pbi.2010.04.012. Epub 2010 Jun 2.
4
Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae.
Plant Cell. 2009 May;21(5):1573-91. doi: 10.1105/tpc.109.066324. Epub 2009 May 19.
5
Visualizing the Movement of Magnaporthe oryzae Effector Proteins in Rice Cells During Infection.
Methods Mol Biol. 2018;1848:103-117. doi: 10.1007/978-1-4939-8724-5_9.
10
Recognition of the Effector AVR-Pia by the Decoy Domain of the Rice NLR Immune Receptor RGA5.
Plant Cell. 2017 Jan;29(1):156-168. doi: 10.1105/tpc.16.00435. Epub 2017 Jan 13.

引用本文的文献

1
The roles of avirulence effectors involved in blast resistance/susceptibility.
Front Plant Sci. 2024 Oct 9;15:1478159. doi: 10.3389/fpls.2024.1478159. eCollection 2024.
2
Recent Advances in Effector Research of .
Biomolecules. 2023 Nov 14;13(11):1650. doi: 10.3390/biom13111650.
5
The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region.
Mol Plant Pathol. 2020 Apr;21(4):445-459. doi: 10.1111/mpp.12894. Epub 2020 Feb 22.
6
The Secreted Protein MoHrip1 Is Necessary for the Virulence of .
Int J Mol Sci. 2019 Apr 2;20(7):1643. doi: 10.3390/ijms20071643.

本文引用的文献

1
Generic names in Magnaporthales.
IMA Fungus. 2016 Jun;7(1):155-9. doi: 10.5598/imafungus.2016.07.01.09. Epub 2016 Jun 8.
2
Solution structure of an avirulence protein, AVR-Pia, from Magnaporthe oryzae.
J Biomol NMR. 2015 Oct;63(2):229-35. doi: 10.1007/s10858-015-9979-7. Epub 2015 Sep 11.
3
How eukaryotic filamentous pathogens evade plant recognition.
Curr Opin Microbiol. 2015 Aug;26:92-101. doi: 10.1016/j.mib.2015.06.012. Epub 2015 Jul 8.
4
Effector-triggered immunity: from pathogen perception to robust defense.
Annu Rev Plant Biol. 2015;66:487-511. doi: 10.1146/annurev-arplant-050213-040012. Epub 2014 Dec 8.
5
Heterologous production, purification, and immunodetection of Magnaporthe oryzae avirulence protein AVR-Pia.
Biosci Biotechnol Biochem. 2014;78(4):680-6. doi: 10.1080/09168451.2014.893186. Epub 2014 May 16.
6
The NB-LRR proteins RGA4 and RGA5 interact functionally and physically to confer disease resistance.
EMBO J. 2014 Sep 1;33(17):1941-59. doi: 10.15252/embj.201487923. Epub 2014 Jul 14.
7
Effectors and effector delivery in Magnaporthe oryzae.
PLoS Pathog. 2014 Jan;10(1):e1003826. doi: 10.1371/journal.ppat.1003826. Epub 2014 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验