Suppr超能文献

用于监测潜在恶性口腔病变的“芯片上的细胞学”传感器。

'Cytology-on-a-chip' based sensors for monitoring of potentially malignant oral lesions.

作者信息

Abram Timothy J, Floriano Pierre N, Christodoulides Nicolaos, James Robert, Kerr A Ross, Thornhill Martin H, Redding Spencer W, Vigneswaran Nadarajah, Speight Paul M, Vick Julie, Murdoch Craig, Freeman Christine, Hegarty Anne M, D'Apice Katy, Phelan Joan A, Corby Patricia M, Khouly Ismael, Bouquot Jerry, Demian Nagi M, Weinstock Y Etan, Rowan Stephanie, Yeh Chih-Ko, McGuff H Stan, Miller Frank R, Gaur Surabhi, Karthikeyan Kailash, Taylor Leander, Le Cathy, Nguyen Michael, Talavera Humberto, Raja Rameez, Wong Jorge, McDevitt John T

机构信息

Rice University, Department of Bioengineering, Houston, TX, USA.

NeoTherma Oncology, Houston, TX, USA.

出版信息

Oral Oncol. 2016 Sep;60:103-11. doi: 10.1016/j.oraloncology.2016.07.002. Epub 2016 Jul 20.

Abstract

UNLABELLED

Despite significant advances in surgical procedures and treatment, long-term prognosis for patients with oral cancer remains poor, with survival rates among the lowest of major cancers. Better methods are desperately needed to identify potential malignancies early when treatments are more effective.

OBJECTIVE

To develop robust classification models from cytology-on-a-chip measurements that mirror diagnostic performance of gold standard approach involving tissue biopsy.

MATERIALS AND METHODS

Measurements were recorded from 714 prospectively recruited patients with suspicious lesions across 6 diagnostic categories (each confirmed by tissue biopsy -histopathology) using a powerful new 'cytology-on-a-chip' approach capable of executing high content analysis at a single cell level. Over 200 cellular features related to biomarker expression, nuclear parameters and cellular morphology were recorded per cell. By cataloging an average of 2000 cells per patient, these efforts resulted in nearly 13 million indexed objects.

RESULTS

Binary "low-risk"/"high-risk" models yielded AUC values of 0.88 and 0.84 for training and validation models, respectively, with an accompanying difference in sensitivity+specificity of 6.2%. In terms of accuracy, this model accurately predicted the correct diagnosis approximately 70% of the time, compared to the 69% initial agreement rate of the pool of expert pathologists. Key parameters identified in these models included cell circularity, Ki67 and EGFR expression, nuclear-cytoplasmic ratio, nuclear area, and cell area.

CONCLUSIONS

This chip-based approach yields objective data that can be leveraged for diagnosis and management of patients with PMOL as well as uncovering new molecular-level insights behind cytological differences across the OED spectrum.

摘要

未标注

尽管手术程序和治疗方法取得了重大进展,但口腔癌患者的长期预后仍然很差,其生存率在主要癌症中处于最低水平。迫切需要更好的方法来在治疗更有效的早期阶段识别潜在的恶性肿瘤。

目的

从芯片细胞学测量中开发强大的分类模型,以反映涉及组织活检的金标准方法的诊断性能。

材料与方法

使用一种强大的新型“芯片细胞学”方法,对714名前瞻性招募的患有可疑病变的患者进行测量,这些患者分属6个诊断类别(均通过组织活检——组织病理学确诊),该方法能够在单细胞水平上进行高内涵分析。每个细胞记录了200多个与生物标志物表达、核参数和细胞形态相关的细胞特征。通过为每位患者平均编目2000个细胞,这些工作产生了近1300万个索引对象。

结果

二元“低风险”/“高风险”模型在训练模型和验证模型中的AUC值分别为0.88和0.84,敏感性+特异性的伴随差异为6.2%。在准确性方面,该模型大约70%的时间能准确预测正确诊断,相比之下,专家病理学家小组的初始一致率为69%。这些模型中确定的关键参数包括细胞圆形度、Ki67和EGFR表达、核质比、核面积和细胞面积。

结论

这种基于芯片的方法产生的客观数据可用于口腔潜在恶性病变患者的诊断和管理,以及揭示整个口腔上皮发育异常谱系细胞学差异背后新的分子水平见解。

相似文献

1
'Cytology-on-a-chip' based sensors for monitoring of potentially malignant oral lesions.
Oral Oncol. 2016 Sep;60:103-11. doi: 10.1016/j.oraloncology.2016.07.002. Epub 2016 Jul 20.
2
Point-of-care oral cytology tool for the screening and assessment of potentially malignant oral lesions.
Cancer Cytopathol. 2020 Mar;128(3):207-220. doi: 10.1002/cncy.22236. Epub 2020 Feb 7.
4
Nuclear F-actin Cytology in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma.
J Dent Res. 2021 May;100(5):479-486. doi: 10.1177/0022034520973162. Epub 2020 Nov 12.
5
Advances toward fully automated in vivo assessment of oral epithelial dysplasia by nuclear endomicroscopy-A pilot study.
J Oral Pathol Med. 2017 Nov;46(10):911-920. doi: 10.1111/jop.12613. Epub 2017 Jul 28.
7
A cytomics-on-a-chip platform and diagnostic model stratifies risk for oral lichenoid conditions.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 Jul;138(1):88-98. doi: 10.1016/j.oooo.2024.04.003. Epub 2024 Apr 15.
8
Optical coherence tomography in the assessment of suspicious oral lesions: an immediate ex vivo study.
Photodiagnosis Photodyn Ther. 2013 Feb;10(1):17-27. doi: 10.1016/j.pdpdt.2012.07.005. Epub 2012 Dec 25.
9
Development of a cytology-based multivariate analytical risk index for oral cancer.
Oral Oncol. 2019 May;92:6-11. doi: 10.1016/j.oraloncology.2019.02.011. Epub 2019 Mar 13.
10
Oral Brush Liquid-Based Cytology: A Study of Concordance between a Cytotechnologist and a Cytopathologist.
Acta Cytol. 2018;62(2):121-129. doi: 10.1159/000486661. Epub 2018 Feb 2.

引用本文的文献

2
Insights Into AI-Enabled Early Diagnosis of Oral Cancer: A Scoping Review.
Cureus. 2025 Jul 21;17(7):e88407. doi: 10.7759/cureus.88407. eCollection 2025 Jul.
3
CD44-SNA1 integrated cytopathology for delineation of high grade dysplastic and neoplastic oral lesions.
PLoS One. 2023 Sep 25;18(9):e0291972. doi: 10.1371/journal.pone.0291972. eCollection 2023.
4
Smart Diagnostics: Combining Artificial Intelligence and In Vitro Diagnostics.
Sensors (Basel). 2022 Aug 24;22(17):6355. doi: 10.3390/s22176355.
6
Diagnostic tests for oral cancer and potentially malignant disorders in patients presenting with clinically evident lesions.
Cochrane Database Syst Rev. 2021 Jul 20;7(7):CD010276. doi: 10.1002/14651858.CD010276.pub3.
7
Point-of-care characterization and risk-based management of oral lesions in primary dental clinics: A simulation model.
PLoS One. 2020 Dec 31;15(12):e0244446. doi: 10.1371/journal.pone.0244446. eCollection 2020.
8
Nuclear F-actin Cytology in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma.
J Dent Res. 2021 May;100(5):479-486. doi: 10.1177/0022034520973162. Epub 2020 Nov 12.
10

本文引用的文献

1
Programmable bio-nano-chip system: a flexible point-of-care platform for bioscience and clinical measurements.
Lab Chip. 2015 Oct 21;15(20):4020-31. doi: 10.1039/c5lc00636h. Epub 2015 Aug 26.
2
Interobserver agreement in dysplasia grading: toward an enhanced gold standard for clinical pathology trials.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 Oct;120(4):474-82.e2. doi: 10.1016/j.oooo.2015.05.023. Epub 2015 Jun 17.
3
Diagnostic tests for oral cancer and potentially malignant disorders in patients presenting with clinically evident lesions.
Cochrane Database Syst Rev. 2015 May 29;2015(5):CD010276. doi: 10.1002/14651858.CD010276.pub2.
4
CD147 and Ki-67 overexpression confers poor prognosis in squamous cell carcinoma of oral tongue: a tissue microarray study.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2015 May;119(5):553-65. doi: 10.1016/j.oooo.2014.12.022. Epub 2015 Jan 7.
5
Programmable bio-nanochip-based cytologic testing of oral potentially malignant disorders in Fanconi anemia.
Oral Dis. 2015 Jul;21(5):593-601. doi: 10.1111/odi.12321. Epub 2015 Apr 6.
6
Automated single-cell motility analysis on a chip using lensfree microscopy.
Sci Rep. 2014 Apr 17;4:4717. doi: 10.1038/srep04717.
7
Increasing the Content of High-Content Screening: An Overview.
J Biomol Screen. 2014 Jun;19(5):640-50. doi: 10.1177/1087057114528537. Epub 2014 Apr 7.
9
Advances in high-throughput single-cell microtechnologies.
Curr Opin Biotechnol. 2014 Feb;25:114-23. doi: 10.1016/j.copbio.2013.09.005. Epub 2013 Dec 18.
10
Continuous-flow cytomorphological staining and analysis.
Lab Chip. 2014 Feb 7;14(3):522-31. doi: 10.1039/c3lc50870f.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验