Suppr超能文献

嗜酸互营杆菌中由乙酰辅酶A通过焦磷酸依赖途径生成ATP,ATP生成的新方式

Pyrophosphate-Dependent ATP Formation from Acetyl Coenzyme A in Syntrophus aciditrophicus, a New Twist on ATP Formation.

作者信息

James Kimberly L, Ríos-Hernández Luis A, Wofford Neil Q, Mouttaki Housna, Sieber Jessica R, Sheik Cody S, Nguyen Hong H, Yang Yanan, Xie Yongming, Erde Jonathan, Rohlin Lars, Karr Elizabeth A, Loo Joseph A, Ogorzalek Loo Rachel R, Hurst Gregory B, Gunsalus Robert P, Szweda Luke I, McInerney Michael J

机构信息

Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA.

Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, USA.

出版信息

mBio. 2016 Aug 16;7(4):e01208-16. doi: 10.1128/mBio.01208-16.

Abstract

UNLABELLED

Syntrophus aciditrophicus is a model syntrophic bacterium that degrades key intermediates in anaerobic decomposition, such as benzoate, cyclohexane-1-carboxylate, and certain fatty acids, to acetate when grown with hydrogen-/formate-consuming microorganisms. ATP formation coupled to acetate production is the main source for energy conservation by S. aciditrophicus However, the absence of homologs for phosphate acetyltransferase and acetate kinase in the genome of S. aciditrophicus leaves it unclear as to how ATP is formed, as most fermentative bacteria rely on these two enzymes to synthesize ATP from acetyl coenzyme A (CoA) and phosphate. Here, we combine transcriptomic, proteomic, metabolite, and enzymatic approaches to show that S. aciditrophicus uses AMP-forming, acetyl-CoA synthetase (Acs1) for ATP synthesis from acetyl-CoA. acs1 mRNA and Acs1 were abundant in transcriptomes and proteomes, respectively, of S. aciditrophicus grown in pure culture and coculture. Cell extracts of S. aciditrophicus had low or undetectable acetate kinase and phosphate acetyltransferase activities but had high acetyl-CoA synthetase activity under all growth conditions tested. Both Acs1 purified from S. aciditrophicus and recombinantly produced Acs1 catalyzed ATP and acetate formation from acetyl-CoA, AMP, and pyrophosphate. High pyrophosphate levels and a high AMP-to-ATP ratio (5.9 ± 1.4) in S. aciditrophicus cells support the operation of Acs1 in the acetate-forming direction. Thus, S. aciditrophicus has a unique approach to conserve energy involving pyrophosphate, AMP, acetyl-CoA, and an AMP-forming, acetyl-CoA synthetase.

IMPORTANCE

Bacteria use two enzymes, phosphate acetyltransferase and acetate kinase, to make ATP from acetyl-CoA, while acetate-forming archaea use a single enzyme, an ADP-forming, acetyl-CoA synthetase, to synthesize ATP and acetate from acetyl-CoA. Syntrophus aciditrophicus apparently relies on a different approach to conserve energy during acetyl-CoA metabolism, as its genome does not have homologs to the genes for phosphate acetyltransferase and acetate kinase. Here, we show that S. aciditrophicus uses an alternative approach, an AMP-forming, acetyl-CoA synthetase, to make ATP from acetyl-CoA. AMP-forming, acetyl-CoA synthetases were previously thought to function only in the activation of acetate to acetyl-CoA.

摘要

未标记

嗜酸互营菌是一种典型的互营细菌,当与消耗氢气/甲酸的微生物共同生长时,它能降解厌氧分解过程中的关键中间体,如苯甲酸盐、环己烷-1-羧酸盐和某些脂肪酸,生成乙酸盐。与乙酸盐生成相偶联的ATP形成是嗜酸互营菌能量守恒的主要来源。然而,嗜酸互营菌基因组中缺乏磷酸乙酰转移酶和乙酸激酶的同源物,这使得ATP的形成方式尚不清楚,因为大多数发酵细菌依靠这两种酶从乙酰辅酶A(CoA)和磷酸盐合成ATP。在这里,我们结合转录组学、蛋白质组学、代谢物和酶学方法,证明嗜酸互营菌利用生成AMP的乙酰辅酶A合成酶(Acs1)从乙酰辅酶A合成ATP。在纯培养和共培养条件下生长的嗜酸互营菌的转录组和蛋白质组中,acs1 mRNA和Acs1分别大量存在。嗜酸互营菌的细胞提取物在所有测试的生长条件下,乙酸激酶和磷酸乙酰转移酶活性较低或无法检测到,但具有较高的乙酰辅酶A合成酶活性。从嗜酸互营菌中纯化得到的Acs1和重组产生的Acs1都能催化从乙酰辅酶A、AMP和焦磷酸生成ATP和乙酸盐。嗜酸互营菌细胞中高焦磷酸水平和高AMP与ATP比值(5.9±1.4)支持Acs1在生成乙酸盐方向上的运作。因此,嗜酸互营菌有一种独特的能量守恒方式,涉及焦磷酸、AMP、乙酰辅酶A和一种生成AMP的乙酰辅酶A合成酶。

重要性

细菌利用磷酸乙酰转移酶和乙酸激酶这两种酶从乙酰辅酶A合成ATP,而生成乙酸盐的古菌则利用一种单一的酶,即生成ADP的乙酰辅酶A合成酶,从乙酰辅酶A合成ATP和乙酸盐。嗜酸互营菌在乙酰辅酶A代谢过程中显然依靠一种不同的方式来守恒能量,因为其基因组中没有磷酸乙酰转移酶和乙酸激酶基因的同源物。在这里,我们表明嗜酸互营菌利用一种替代方式,即生成AMP的乙酰辅酶A合成酶,从乙酰辅酶A合成ATP。生成AMP的乙酰辅酶A合成酶以前被认为仅在将乙酸盐激活为乙酰辅酶A的过程中起作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf28/4992975/40ff43ef9ed0/mbo0041629320001.jpg

相似文献

4
Benzoate fermentation by the anaerobic bacterium Syntrophus aciditrophicus in the absence of hydrogen-using microorganisms.
Appl Environ Microbiol. 2001 Dec;67(12):5520-5. doi: 10.1128/AEM.67.12.5520-5525.2001.
5
Roles of acetyl-CoA synthetase (ADP-forming) and acetate kinase (PPi-forming) in ATP and PPi supply in Entamoeba histolytica.
Biochim Biophys Acta. 2016 Jun;1860(6):1163-72. doi: 10.1016/j.bbagen.2016.02.010. Epub 2016 Feb 23.
6
Two pathways for glutamate biosynthesis in the syntrophic bacterium Syntrophus aciditrophicus.
Appl Environ Microbiol. 2015 Dec;81(24):8434-44. doi: 10.1128/AEM.02323-15. Epub 2015 Oct 2.
7
A New Pathway for Forming Acetate and Synthesizing ATP during Fermentation in Bacteria.
Appl Environ Microbiol. 2021 Jun 25;87(14):e0295920. doi: 10.1128/AEM.02959-20.
8
Fermentative Cyclohexane Carboxylate Formation in Syntrophus aciditrophicus.
J Mol Microbiol Biotechnol. 2016;26(1-3):165-79. doi: 10.1159/000440881. Epub 2016 Mar 10.

引用本文的文献

1
Whole genome sequence of the syntrophic benzoate-degrading bacterium, DSM 102354.
Microbiol Resour Announc. 2025 Sep 11;14(9):e0026625. doi: 10.1128/mra.00266-25. Epub 2025 Jul 31.
3
Synergy and competition during the anaerobic degradation of N-acetylglucosamine in a methane-emitting, subarctic, pH-neutral fen.
Front Microbiol. 2024 Dec 11;15:1428517. doi: 10.3389/fmicb.2024.1428517. eCollection 2024.
4
A non-methanogenic archaeon within the order Methanocellales.
Nat Commun. 2024 Jun 13;15(1):4858. doi: 10.1038/s41467-024-48185-5.
5
The vast landscape of carbohydrate fermentation in prokaryotes.
FEMS Microbiol Rev. 2024 Jun 20;48(4). doi: 10.1093/femsre/fuae016.
6
On the potential roles of phosphorus in the early evolution of energy metabolism.
Front Microbiol. 2023 Aug 2;14:1239189. doi: 10.3389/fmicb.2023.1239189. eCollection 2023.
7
The Acyl-Proteome of Syntrophus aciditrophicus Reveals Metabolic Relationships in Benzoate Degradation.
Mol Cell Proteomics. 2022 Apr;21(4):100215. doi: 10.1016/j.mcpro.2022.100215. Epub 2022 Feb 19.
8
Enoyl-Coenzyme A Respiration via Formate Cycling in Syntrophic Bacteria.
mBio. 2021 Feb 22;13(1):e0374021. doi: 10.1128/mbio.03740-21. Epub 2022 Feb 1.
9
GAL08, an Uncultivated Group of , Is a Dominant Bacterial Clade in a Neutral Hot Spring.
Front Microbiol. 2022 Jan 11;12:787651. doi: 10.3389/fmicb.2021.787651. eCollection 2021.
10
A New Pathway for Forming Acetate and Synthesizing ATP during Fermentation in Bacteria.
Appl Environ Microbiol. 2021 Jun 25;87(14):e0295920. doi: 10.1128/AEM.02959-20.

本文引用的文献

1
Energetics of methanogenic benzoate degradation by in syntrophic coculture.
Microbiology (Reading). 1997 Jul;143(7):2345-2351. doi: 10.1099/00221287-143-7-2345.
2
Acylation of Biomolecules in Prokaryotes: a Widespread Strategy for the Control of Biological Function and Metabolic Stress.
Microbiol Mol Biol Rev. 2015 Sep;79(3):321-46. doi: 10.1128/MMBR.00020-15. Epub 2015 Jul 15.
3
Mitochondrial respiration and redox coupling in articular chondrocytes.
Arthritis Res Ther. 2015 Mar 10;17(1):54. doi: 10.1186/s13075-015-0566-9.
5
The importance of hydrogen and formate transfer for syntrophic fatty, aromatic and alicyclic metabolism.
Environ Microbiol. 2014 Jan;16(1):177-88. doi: 10.1111/1462-2920.12269. Epub 2013 Oct 6.
7
Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation.
Annu Rev Microbiol. 2012;66:429-52. doi: 10.1146/annurev-micro-090110-102844. Epub 2012 Jul 9.
8
Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli.
Nat Chem Biol. 2009 Aug;5(8):593-9. doi: 10.1038/nchembio.186. Epub 2009 Jun 28.
9
The genome of Syntrophus aciditrophicus: life at the thermodynamic limit of microbial growth.
Proc Natl Acad Sci U S A. 2007 May 1;104(18):7600-5. doi: 10.1073/pnas.0610456104. Epub 2007 Apr 18.
10
Cyclohexane carboxylate and benzoate formation from crotonate in Syntrophus aciditrophicus.
Appl Environ Microbiol. 2007 Feb;73(3):930-8. doi: 10.1128/AEM.02227-06. Epub 2006 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验