Suppr超能文献

使用各向同性-向列相-各向同性相循环来塑造大单分子层囊泡的形状。

Sculpting the shapes of giant unilamellar vesicles using isotropic-nematic-isotropic phase cycles.

机构信息

School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA.

Department of Chemical Engineering, University of Arkansas, Fayetteville, AR, USA.

出版信息

Soft Matter. 2021 Oct 20;17(40):9078-9086. doi: 10.1039/d1sm00910a.

Abstract

Understanding how soft matter deforms in response to mechanical interactions is central to the design of functional synthetic materials as well as elucidation of the behaviors of biological assemblies. Here we explore how cycles of thermally induced transitions between nematic (N) and isotropic (I) phases can be used to exert cyclical elastic stresses on dispersions of giant unilamellar vesicles (GUVs) and thereby evolve GUV shape and properties. The measurements were enabled by the finding that I-N-I phase transitions of the lyotropic chromonic liquid crystal disodium cromoglycate, when conducted an intermediate columnar (M) phase, minimized transport of GUVs on phase fronts to confining surfaces. Whereas I to N phase transitions strained spherical GUVs into spindle-like shapes, with an efflux of GUV internal volume, subsequent N to I transitions generated a range of complex GUV shapes, including stomatocyte, pear- and dumbbell-like shapes that depended on the extent of strain in the N phase. The highest strained GUVs were observed to form buds (daughter vesicles) that we show, a cycle of I-N-I-N phase transitions, are connected a neck to the parent vesicle. Additional experiments established that changes in elasticity of the phase surrounding the GUVs and not thermal expansion of membranes were responsible for the shape transitions, and that I-N-I transformations that generate stomatocytes can be understood from the Bilayer-Coupling model of GUV shapes. Overall, these observations advance our understanding of how LC elastic stresses can be regulated to evolve the shapes of soft biological assemblies as well as provide new approaches for engineering synthetic soft matter.

摘要

理解软物质如何响应机械相互作用而变形,对于设计功能性合成材料以及阐明生物组装体的行为至关重要。在这里,我们探讨了热诱导向列(N)相与各向同性(I)相之间的循环转变如何对大单层囊泡(GUV)的分散体施加循环弹性应力,从而改变 GUV 的形状和性质。这项测量是通过以下发现实现的:当溶致向列相液晶二钠色甘酸钠处于中间柱状(M)相时,I-N-I 相转变可以将 GUV 在相前沿上的输运最小化到限制表面。尽管 I 到 N 相转变将球形 GUV 拉伸成纺锤状,导致 GUV 内部体积流出,但随后的 N 到 I 相转变产生了一系列复杂的 GUV 形状,包括变形虫、梨形和哑铃形,这取决于 N 相中的应变程度。观察到最高应变的 GUV 形成芽(子囊泡),我们表明,在 I-N-I-N 相转变的一个循环中,芽与母囊泡通过颈部相连。额外的实验确定了是围绕 GUV 的相的弹性变化而不是膜的热膨胀导致了形状转变,并且产生变形虫的 I-N-I 转变可以从 GUV 形状的双层耦合模型中得到理解。总的来说,这些观察结果推进了我们对 LC 弹性应力如何调节以改变软生物组装体的形状的理解,并为工程合成软物质提供了新的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验