Suppr超能文献

半刚性桥连硫醇作为仿生产氢电催化剂中的质子穿梭体。

Hemilabile Bridging Thiolates as Proton Shuttles in Bioinspired H Production Electrocatalysts.

机构信息

Department of Chemistry, Texas A & M University , College Station, Texas 77843, United States.

出版信息

J Am Chem Soc. 2016 Oct 5;138(39):12920-12927. doi: 10.1021/jacs.6b06461. Epub 2016 Sep 21.

Abstract

Synthetic analogues and computationally assisted structure-function analyses have been used to explore the features that control proton-electron and proton-hydride coupling in electrocatalysts inspired by the [NiFe]-hydrogenase active site. Of the bimetallic complexes derived from aggregation of the dithiolato complexes MNS (NS = bismercaptoethane diazacycloheptane; M = Ni or Fe(NO)) with (η-CH)Fe(CO) (the Fe' component) or (η-CH)Fe(CO), Fe″, which yielded Ni-Fe', Fe-Fe', Ni-Fe″, and Fe-Fe″, respectively, both Ni-Fe' and Fe-Fe' were determined to be active electrocatalysts for H production in the presence of trifluoroacetic acid. Correlations of electrochemical potentials and H generation are consistent with calculated parameters in a predicted mechanism that delineates the order of addition of electrons and protons, the role of the redox-active, noninnocent NO ligand in electron uptake, the necessity for Fe'-S bond breaking (or the hemilability of the metallodithiolate ligand), and hydride-proton coupling routes. Although the redox active {Fe(NO)} moiety can accept and store an electron and subsequently a proton (forming the relatively unstable Fe-bound HNO), it cannot form a hydride as the NO shields the Fe from protonation. Successful coupling occurs from a hydride on Fe' with a proton on thiolate S and requires a propitious orientation of the H-S bond that places H and H within coupling distance. This orientation and coupling barrier are redox-level dependent. While the Ni-Fe' derivative has vacant sites on both metals for hydride formation, the uptake of the required electron is more energy intensive than that in Fe-Fe' featuring the noninnocent NO ligand. The Fe'-S bond cleavage facilitated by the hemilability of thiolate to produce a terminal thiolate as a proton shuttle is a key feature in both mechanisms. The analogous Fe″-S bond cleavage on Ni-Fe″ leads to degradation.

摘要

合成类似物和计算辅助的结构-功能分析已被用于探索控制受[NiFe]-氢化酶活性位点启发的电催化剂中质子-电子和质子-氢耦合的特征。从双硫醇配合物 MNS(NS=双巯基乙二胺氮杂环庚烷;M=Ni 或 Fe(NO))与(η-CH)Fe(CO)(Fe'组分)或(η-CH)Fe(CO),Fe″的聚集衍生的双金属配合物中,分别得到 Ni-Fe'、Fe-Fe'、Ni-Fe″和 Fe-Fe″,Ni-Fe'和 Fe-Fe'都被确定为在三氟乙酸存在下产氢的活性电催化剂。电化学电势和 H 生成的相关性与预测机制中的计算参数一致,该机制描绘了电子和质子的添加顺序、氧化还原活性、非配位的 NO 配体在电子摄取中的作用、Fe'-S 键断裂(或金属双硫醇配体的半配位)的必要性以及氢-质子耦合途径。尽管氧化还原活性{Fe(NO)}部分可以接受和存储一个电子,随后是一个质子(形成相对不稳定的 Fe 结合的 HNO),但它不能形成氢化物,因为 NO 使 Fe 免受质子化。成功的偶联发生在 Fe'上的氢化物与硫醇上的质子上,需要 H-S 键的有利取向,使 H 和 H 处于耦合距离内。这种取向和耦合势垒取决于氧化还原水平。虽然 Ni-Fe'衍生物在两种金属上都有空位用于氢化物形成,但所需电子的摄取比具有非配位的 NO 配体的 Fe-Fe'更具能量密集性。硫醇的半配位促进的 Fe'-S 键断裂,产生作为质子穿梭体的末端硫醇,是这两种机制中的关键特征。类似的 Fe″-S 键在 Ni-Fe″上的断裂导致降解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验