Seo Eunyoung, Woo Jongchan, Park Eunsook, Bertolani Steven J, Siegel Justin B, Choi Doil, Dinesh-Kumar Savithramma P
a Department of Plant Biology and the Genome Center , College of Biological Sciences, University of California , Davis , CA USA.
b Department of Plant Science , Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University , Korea.
Autophagy. 2016 Nov;12(11):2054-2068. doi: 10.1080/15548627.2016.1217373. Epub 2016 Aug 19.
Autophagy is important for degradation and recycling of intracellular components. In a diversity of genera and species, orthologs and paralogs of the yeast Atg4 and Atg8 proteins are crucial in the biogenesis of double-membrane autophagosomes that carry the cellular cargoes to vacuoles and lysosomes. Although many plant genome sequences are available, the ATG4 and ATG8 sequence analysis is limited to some model plants. We identified 28 ATG4 and 116 ATG8 genes from the available 18 different plant genome sequences. Gene structures and protein domain sequences of ATG4 and ATG8 are conserved in plant lineages. Phylogenetic analyses classified ATG8s into 3 subgroups suggesting divergence from the common ancestor. The ATG8 expansion in plants might be attributed to whole genome duplication, segmental and dispersed duplication, and purifying selection. Our results revealed that the yeast Atg4 processes Arabidopsis ATG8 but not human LC3A (HsLC3A). In contrast, HsATG4B can process yeast and plant ATG8s in vitro but yeast and plant ATG4s cannot process HsLC3A. Interestingly, in Nicotiana benthamiana plants the yeast Atg8 is processed compared to HsLC3A. However, HsLC3A is processed when coexpressed with HsATG4B in plants. Molecular modeling indicates that lack of processing of HsLC3A by plant and yeast ATG4 is not due to lack of interaction with HsLC3A. Our in-depth analyses of ATG4 and ATG8 in the plant lineage combined with results of cross-kingdom ATG8 processing by ATG4 further support the evolutionarily conserved maturation of ATG8. Broad ATG8 processing by HsATG4B and lack of processing of HsLC3A by yeast and plant ATG4s suggest that the cross-kingdom ATG8 processing is determined by ATG8 sequence rather than ATG4.
自噬对于细胞内成分的降解和循环利用至关重要。在多种属和物种中,酵母Atg4和Atg8蛋白的直系同源物和旁系同源物在双膜自噬体的生物发生过程中起着关键作用,这些自噬体将细胞内物质运输到液泡和溶酶体中。尽管有许多植物基因组序列可供使用,但ATG4和ATG8的序列分析仅限于一些模式植物。我们从现有的18种不同植物基因组序列中鉴定出了28个ATG4基因和116个ATG8基因。ATG4和ATG8的基因结构和蛋白质结构域序列在植物谱系中是保守的。系统发育分析将ATG8s分为3个亚组,表明它们与共同祖先发生了分化。植物中ATG8的扩增可能归因于全基因组复制、片段重复和分散重复以及纯化选择。我们的结果表明,酵母Atg4可以加工拟南芥ATG8,但不能加工人LC3A(HsLC3A)。相反,HsATG4B在体外可以加工酵母和植物的ATG8s,但酵母和植物的ATG4s不能加工HsLC3A。有趣的是,在本氏烟草植物中,与HsLC3A相比,酵母Atg8可以被加工。然而,当HsLC3A与HsATG4B在植物中共表达时,HsLC3A可以被加工。分子建模表明,植物和酵母的ATG4不能加工HsLC3A并不是因为与HsLC3A缺乏相互作用。我们对植物谱系中ATG4和ATG8的深入分析,以及ATG4对跨王国ATG8加工的结果,进一步支持了ATG8在进化上保守的成熟过程。HsATG4B对ATG8的广泛加工以及酵母和植物的ATG4对HsLC3A的不加工表明,跨王国ATG8的加工是由ATG8序列而不是ATG4决定的。