Li Bin, Lowe-Power Tiffany, Kurihara Shin, Gonzales Stephen, Naidoo Jacinth, MacMillan John B, Allen Caitilyn, Michael Anthony J
Deptartment of Plant Pathology, University of Wisconsin , Madison, Wisconsin, United States.
ACS Chem Biol. 2016 Oct 21;11(10):2782-2789. doi: 10.1021/acschembio.6b00629. Epub 2016 Aug 24.
The small polyamine putrescine (1,4-diaminobutane) is ubiquitously and abundantly found in all three domains of life. It is a precursor, through N-aminopropylation or N-aminobutylation, for biosynthesis of the longer polyamines spermidine, sym-homospermidine, spermine, and thermospermine and longer and branched chain polyamines. Putrescine is also biochemically modified for purposes of metabolic regulation and catabolism, e.g. N-acetylation and N-glutamylation, and for incorporation into specialized metabolites, e.g. N-methylation, N-citrylation, N-palmitoylation, N-hydroxylation, and N-hydroxycinnamoylation. Only one example is known where putrescine is modified on a methylene carbon: the formation of 2-hydroxyputrescine by an unknown C-hydroxylase. Here, we report the functional identification of a previously undescribed putrescine 2-hydroxylase, a Rieske-type nonheme iron sulfur protein from the β-proteobacteria Bordetella bronchiseptica and Ralstonia solanacearum. Identification of the putrescine 2-hydroxylase will facilitate investigation of the physiological functions of 2-hydroxyputrescine. One known role of 2-hydroxyputrescine has direct biomedical relevance: its role in the biosynthesis of the cyclic hydroxamate siderophore alcaligin, a potential virulence factor of the causative agent of whooping cough, Bordetella pertussis. We also report the functional identification of a putrescine N-hydroxylase from the γ-proteobacterium Shewanella oneidensis, which is homologous to FAD- and NADPH-dependent ornithine and lysine N-monooxygenases involved in siderophore biosynthesis. Heterologous expression of the putrescine N-hydroxylase in E. coli produced free N-hydroxyputrescine, never detected previously in a biological system. Furthermore, the putrescine C- and N-hydroxylases identified here could contribute new functionality to polyamine structural scaffolds, including C-H bond functionalization in synthetic biology strategies.
小分子多胺腐胺(1,4 - 二氨基丁烷)在生命的所有三个域中普遍且大量存在。它是通过N - 氨丙基化或N - 氨丁基化作用,用于生物合成更长链多胺亚精胺、同型亚精胺、精胺和热精胺以及更长链和支链多胺的前体。腐胺还会进行生化修饰以用于代谢调节和分解代谢,例如N - 乙酰化和N - 谷氨酰化,以及掺入特殊代谢物中,例如N - 甲基化、N - 柠檬酰化、N - 棕榈酰化、N - 羟基化和N - 羟基肉桂酰化。目前仅知道一个腐胺在亚甲基碳上被修饰的例子:由一种未知的C - 羟化酶形成2 - 羟基腐胺。在此,我们报道了一种先前未描述的腐胺2 - 羟化酶的功能鉴定,它是一种来自β - 变形菌支气管败血博德特氏菌和青枯雷尔氏菌的 Rieske 型非血红素铁硫蛋白。腐胺2 - 羟化酶的鉴定将有助于研究2 - 羟基腐胺的生理功能。2 - 羟基腐胺的一个已知作用具有直接的生物医学相关性:它在环状异羟肟酸铁载体阿尔卡利菌素的生物合成中的作用,阿尔卡利菌素是百日咳病原体百日咳博德特氏菌的一种潜在毒力因子。我们还报道了来自γ - 变形菌希瓦氏菌的腐胺N - 羟化酶的功能鉴定,它与参与铁载体生物合成的FAD和NADPH依赖性鸟氨酸和赖氨酸N - 单加氧酶同源。腐胺N - 羟化酶在大肠杆菌中的异源表达产生了游离的N - 羟基腐胺,这在生物系统中以前从未检测到。此外,这里鉴定的腐胺C - 和N - 羟化酶可能为多胺结构支架贡献新的功能,包括合成生物学策略中的C - H键功能化。