Suppr超能文献

基于有限状态投影的界,用于使用单细胞数据比较化学主方程模型。

Finite state projection based bounds to compare chemical master equation models using single-cell data.

作者信息

Fox Zachary, Neuert Gregor, Munsky Brian

机构信息

School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA.

Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.

出版信息

J Chem Phys. 2016 Aug 21;145(7):074101. doi: 10.1063/1.4960505.

Abstract

Emerging techniques now allow for precise quantification of distributions of biological molecules in single cells. These rapidly advancing experimental methods have created a need for more rigorous and efficient modeling tools. Here, we derive new bounds on the likelihood that observations of single-cell, single-molecule responses come from a discrete stochastic model, posed in the form of the chemical master equation. These strict upper and lower bounds are based on a finite state projection approach, and they converge monotonically to the exact likelihood value. These bounds allow one to discriminate rigorously between models and with a minimum level of computational effort. In practice, these bounds can be incorporated into stochastic model identification and parameter inference routines, which improve the accuracy and efficiency of endeavors to analyze and predict single-cell behavior. We demonstrate the applicability of our approach using simulated data for three example models as well as for experimental measurements of a time-varying stochastic transcriptional response in yeast.

摘要

新兴技术现在允许对单细胞中生物分子的分布进行精确量化。这些迅速发展的实验方法产生了对更严格、更高效的建模工具的需求。在这里,我们推导了关于单细胞、单分子反应观测值来自以化学主方程形式提出的离散随机模型的似然性的新界限。这些严格的上下界基于有限状态投影方法,并且它们单调收敛到精确的似然值。这些界限允许人们以最小的计算量严格区分模型。在实践中,这些界限可以纳入随机模型识别和参数推断程序,这提高了分析和预测单细胞行为的准确性和效率。我们使用三个示例模型的模拟数据以及酵母中时变随机转录反应的实验测量来证明我们方法的适用性。

相似文献

3
Bayesian Estimation for Stochastic Gene Expression Using Multifidelity Models.
J Phys Chem B. 2019 Mar 14;123(10):2217-2234. doi: 10.1021/acs.jpcb.8b10946. Epub 2019 Mar 5.
7
The finite state projection algorithm for the solution of the chemical master equation.
J Chem Phys. 2006 Jan 28;124(4):044104. doi: 10.1063/1.2145882.
8
Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.
IEEE/ACM Trans Comput Biol Bioinform. 2013 Sep-Oct;10(5):1125-36. doi: 10.1109/TCBB.2013.34.
9
Computational study of p53 regulation via the chemical master equation.
Phys Biol. 2016 Apr 29;13(3):035001. doi: 10.1088/1478-3975/13/3/035001.
10
An efficient finite-difference strategy for sensitivity analysis of stochastic models of biochemical systems.
Biosystems. 2017 Jan;151:43-52. doi: 10.1016/j.biosystems.2016.11.006. Epub 2016 Nov 30.

引用本文的文献

1
Sequential design of single-cell experiments to identify discrete stochastic models for gene expression.
Proc IEEE Conf Decis Control. 2024 Dec;2024:7778-7785. doi: 10.1109/CDC56724.2024.10886397.
3
Spectral neural approximations for models of transcriptional dynamics.
Biophys J. 2024 Sep 3;123(17):2892-2901. doi: 10.1016/j.bpj.2024.04.034. Epub 2024 May 6.
4
Gene expression model inference from snapshot RNA data using Bayesian non-parametrics.
Nat Comput Sci. 2023 Feb;3(2):174-183. doi: 10.1038/s43588-022-00392-0. Epub 2023 Jan 19.
6
BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO.
Int J Uncertain Quantif. 2020;10(6):515-542. doi: 10.1615/int.j.uncertaintyquantification.2020033241.
7
Optimal Design of Single-Cell Experiments within Temporally Fluctuating Environments.
Complexity. 2020;2020. doi: 10.1155/2020/8536365. Epub 2020 Jun 13.
8
Bayesian Estimation for Stochastic Gene Expression Using Multifidelity Models.
J Phys Chem B. 2019 Mar 14;123(10):2217-2234. doi: 10.1021/acs.jpcb.8b10946. Epub 2019 Mar 5.
9
The finite state projection based Fisher information matrix approach to estimate information and optimize single-cell experiments.
PLoS Comput Biol. 2019 Jan 15;15(1):e1006365. doi: 10.1371/journal.pcbi.1006365. eCollection 2019 Jan.
10
Short linear motifs in intrinsically disordered regions modulate HOG signaling capacity.
BMC Syst Biol. 2018 Jul 3;12(1):75. doi: 10.1186/s12918-018-0597-3.

本文引用的文献

2
Designing experiments to understand the variability in biochemical reaction networks.
J R Soc Interface. 2013 Aug 28;10(88):20130588. doi: 10.1098/rsif.2013.0588. Print 2013 Nov 6.
3
Systematic identification of signal-activated stochastic gene regulation.
Science. 2013 Feb 1;339(6119):584-7. doi: 10.1126/science.1231456.
4
Moment-based inference predicts bimodality in transient gene expression.
Proc Natl Acad Sci U S A. 2012 May 22;109(21):8340-5. doi: 10.1073/pnas.1200161109. Epub 2012 May 7.
5
Using gene expression noise to understand gene regulation.
Science. 2012 Apr 13;336(6078):183-7. doi: 10.1126/science.1216379.
6
Transient activation of the HOG MAPK pathway regulates bimodal gene expression.
Science. 2011 May 6;332(6030):732-5. doi: 10.1126/science.1198851.
7
Solving the chemical master equation using sliding windows.
BMC Syst Biol. 2010 Apr 8;4:42. doi: 10.1186/1752-0509-4-42.
8
Parameter estimation and model selection in computational biology.
PLoS Comput Biol. 2010 Mar 5;6(3):e1000696. doi: 10.1371/journal.pcbi.1000696.
9
Listening to the noise: random fluctuations reveal gene network parameters.
Mol Syst Biol. 2009;5:318. doi: 10.1038/msb.2009.75. Epub 2009 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验