Suppr超能文献

通过数学规划来约束化学主方程的静态分布。

Bounding the stationary distributions of the chemical master equation via mathematical programming.

机构信息

Department of Mathematics, Imperial College London, London, United Kingdom.

Department of Bioengineering, Imperial College London, London, United Kingdom.

出版信息

J Chem Phys. 2019 Jul 21;151(3):034109. doi: 10.1063/1.5100670.

Abstract

The stochastic dynamics of biochemical networks are usually modeled with the chemical master equation (CME). The stationary distributions of CMEs are seldom solvable analytically, and numerical methods typically produce estimates with uncontrolled errors. Here, we introduce mathematical programming approaches that yield approximations of these distributions with computable error bounds which enable the verification of their accuracy. First, we use semidefinite programming to compute increasingly tighter upper and lower bounds on the moments of the stationary distributions for networks with rational propensities. Second, we use these moment bounds to formulate linear programs that yield convergent upper and lower bounds on the stationary distributions themselves, their marginals, and stationary averages. The bounds obtained also provide a computational test for the uniqueness of the distribution. In the unique case, the bounds form an approximation of the stationary distribution with a computable bound on its error. In the nonunique case, our approach yields converging approximations of the ergodic distributions. We illustrate our methodology through several biochemical examples taken from the literature: Schlögl's model for a chemical bifurcation, a two-dimensional toggle switch, a model for bursty gene expression, and a dimerization model with multiple stationary distributions.

摘要

生化网络的随机动力学通常使用化学主方程(CME)进行建模。CME 的静态分布很少能够进行解析求解,而数值方法通常会产生具有不可控误差的估计值。在这里,我们引入了数学规划方法,这些方法可以用可计算的误差界来近似这些分布,从而能够验证其准确性。首先,我们使用半定规划来计算具有有理倾向的网络的静态分布的矩的越来越紧的上界和下界。其次,我们使用这些矩界来制定线性规划,这些线性规划给出了静态分布本身、它们的边缘和静态平均值的收敛上界和下界。所得到的界还为分布的唯一性提供了一个计算检验。在唯一的情况下,界形成了静态分布的逼近,并且可以计算出其误差的界。在非唯一的情况下,我们的方法给出了遍历分布的收敛逼近。我们通过从文献中选取的几个生化示例来说明我们的方法:Schlögl 的化学分岔模型、二维 toggle 开关、突发基因表达模型和具有多个静态分布的二聚化模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验