Kaushik Monu, Bahrenberg Thorsten, Can Thach V, Caporini Marc A, Silvers Robert, Heiliger Jörg, Smith Albert A, Schwalbe Harald, Griffin Robert G, Corzilius Björn
Institute of Physical and Theoretical Chemistry and Institute of Biophysical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt am Main, Germany.
Phys Chem Chem Phys. 2016 Oct 21;18(39):27205-27218. doi: 10.1039/c6cp04623a. Epub 2016 Aug 22.
We investigate complexes of two paramagnetic metal ions Gd and Mn to serve as polarizing agents for solid-state dynamic nuclear polarization (DNP) of H, C, and N at magnetic fields of 5, 9.4, and 14.1 T. Both ions are half-integer high-spin systems with a zero-field splitting and therefore exhibit a broadening of the m = -1/2 ↔ +1/2 central transition which scales inversely with the external field strength. We investigate experimentally the influence of the chelator molecule, strong hyperfine coupling to the metal nucleus, and deuteration of the bulk matrix on DNP properties. At small Gd-DOTA concentrations the narrow central transition allows us to polarize nuclei with small gyromagnetic ratio such as C and even N via the solid effect. We demonstrate that enhancements observed are limited by the available microwave power and that large enhancement factors of >100 (for H) and on the order of 1000 (for C) can be achieved in the saturation limit even at 80 K. At larger Gd(iii) concentrations (≥10 mM) where dipolar couplings between two neighboring Gd complexes become substantial a transition towards cross effect as dominating DNP mechanism is observed. Furthermore, the slow spin-diffusion between C and N, respectively, allows for temporally resolved observation of enhanced polarization spreading from nuclei close to the paramagnetic ion towards nuclei further removed. Subsequently, we present preliminary DNP experiments on ubiquitin by site-directed spin-labeling with Gd chelator tags. The results hold promise towards applications of such paramagnetically labeled proteins for DNP applications in biophysical chemistry and/or structural biology.
我们研究了两种顺磁性金属离子钆(Gd)和锰(Mn)的配合物,以作为在5、9.4和14.1特斯拉磁场下对氢(H)、碳(C)和氮(N)进行固态动态核极化(DNP)的极化剂。这两种离子都是具有零场分裂的半整数高自旋体系,因此在m = -1/2 ↔ +1/2中心跃迁处会出现展宽,展宽与外场强度成反比。我们通过实验研究了螯合剂分子、与金属核的强超精细耦合以及主体基质的氘代对DNP性质的影响。在低钆 - 二乙三胺五乙酸(Gd - DOTA)浓度下,狭窄的中心跃迁使我们能够通过固体效应使诸如碳甚至氮等具有小旋磁比的核极化。我们证明观察到的增强受可用微波功率限制,并且即使在80 K的饱和极限下,也可以实现大于100(对于氢)和大约1000(对于碳)的大增强因子。在较高的钆(Ⅲ)浓度(≥10 mM)下,两个相邻钆配合物之间的偶极耦合变得显著,观察到向交叉效应作为主导DNP机制的转变。此外,碳和氮之间缓慢的自旋扩散分别允许对极化从靠近顺磁性离子的核向更远的核的增强扩散进行时间分辨观察。随后,我们通过用钆螯合剂标签进行定点自旋标记展示了对泛素的初步DNP实验。这些结果有望将这种顺磁性标记的蛋白质应用于生物物理化学和/或结构生物学中的DNP应用。