Suppr超能文献

在 Gd(III)标记的蛋白质中进行的位点特异性动态核极化。

Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein.

机构信息

Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt am Main, Germany.

出版信息

Phys Chem Chem Phys. 2020 Nov 18;22(44):25455-25466. doi: 10.1039/d0cp05021k.

Abstract

Dynamic nuclear polarization (DNP) of a biomolecule tagged with a polarizing agent has the potential to not only increase NMR sensitivity but also to provide specificity towards the tagging site. Although the general concept has been often discussed, the observation of true site-specific DNP and its dependence on the electron-nuclear distance has been elusive. Here, we demonstrate site-specific DNP in a uniformly isotope-labeled ubiquitin. By recombinant expression of three different ubiquitin point mutants (F4C, A28C, and G75C) post-translationally modified with a Gd3+-chelator tag, localized metal-ion DNP of 13C and 15N is investigated. Effects counteracting the site-specificity of DNP such as nuclear spin-lattice relaxation and proton-driven spin diffusion have been attenuated by perdeuteration of the protein. Particularly for 15N, large DNP enhancement factors on the order of 100 and above as well as localized effects within side-chain resonances differently distributed over the protein are observed. By analyzing the experimental DNP built-up dynamics combined with structural modeling of Gd3+-tags in ubiquitin supported by paramagnetic relaxation enhancement (PRE) in solution, we provide, for the first time, quantitative information on the distance dependence of the initial DNP transfer. We show that the direct 15N DNP transfer rate indeed linearly depends on the square of the hyperfine interaction between the electron and the nucleus following Fermi's golden rule, however, below a certain distance cutoff paramagnetic signal bleaching may dramatically skew the correlation.

摘要

带有极化剂标记的生物分子的动态核极化(DNP)不仅有望提高 NMR 灵敏度,还能提高标记部位的特异性。尽管这一概念已被广泛讨论,但真正的位点特异性 DNP 的观察及其对电子-核距离的依赖性一直难以捉摸。在这里,我们在均匀同位素标记的泛素中证明了位点特异性 DNP。通过重组表达三种不同的泛素点突变体(F4C、A28C 和 G75C),这些突变体在翻译后被 Gd3+螯合剂标签修饰,研究了局部金属离子的 13C 和 15N 的 DNP。通过蛋白质的氘代,减弱了与 DNP 位点特异性相反的核自旋晶格弛豫和质子驱动的自旋扩散等效应。特别是对于 15N,观察到了高达 100 倍以上的大 DNP 增强因子,以及在侧链共振中分布不同的局部效应。通过分析实验 DNP 建立动力学,结合溶液中顺磁弛豫增强(PRE)支持的泛素中 Gd3+标签的结构建模,我们首次提供了初始 DNP 转移距离依赖性的定量信息。我们表明,15N 的直接 DNP 转移率确实遵循费米黄金定则,与电子和核之间的超精细相互作用的平方成正比,但在一定的距离截止值以下,顺磁信号的漂白可能会显著扭曲相关性。

相似文献

1
Site-specific dynamic nuclear polarization in a Gd(III)-labeled protein.
Phys Chem Chem Phys. 2020 Nov 18;22(44):25455-25466. doi: 10.1039/d0cp05021k.
3
Impact of Gd3+ on DNP of [1-13C]pyruvate doped with trityl OX063, BDPA, or 4-oxo-TEMPO.
J Phys Chem A. 2012 May 31;116(21):5129-38. doi: 10.1021/jp302399f. Epub 2012 May 18.
4
Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling.
Chemistry. 2015 Sep 7;21(37):12971-7. doi: 10.1002/chem.201501376.
5
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization.
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4295-4299. doi: 10.1002/anie.201612388. Epub 2017 Mar 20.
6
Can metal ion complexes be used as polarizing agents for solution DNP? A theoretical discussion.
J Biomol NMR. 2014 Apr;58(4):239-49. doi: 10.1007/s10858-013-9728-8. Epub 2013 Apr 20.
7
Dynamic nuclear polarization assisted spin diffusion for the solid effect case.
J Chem Phys. 2011 Feb 21;134(7):074509. doi: 10.1063/1.3526486.
8
Monitoring electron spin fluctuations with paramagnetic relaxation enhancement.
J Magn Reson. 2022 Mar;336:107143. doi: 10.1016/j.jmr.2022.107143. Epub 2022 Jan 15.
9
C Dynamic Nuclear Polarization Using a Trimeric Gd Complex as an Additive.
J Phys Chem A. 2017 Jul 13;121(27):5127-5135. doi: 10.1021/acs.jpca.7b03869. Epub 2017 Jun 28.
10
Dynamic nuclear polarization of nucleic acid with endogenously bound manganese.
J Biomol NMR. 2015 Sep;63(1):97-109. doi: 10.1007/s10858-015-9972-1. Epub 2015 Jul 29.

引用本文的文献

1
2
Locating Impurity Phases in the Lithium-Ion Conductor Al-Doped LiLaZrO through Dynamic Nuclear Polarization and Nuclear Magnetic Resonance Spectroscopy.
Chem Mater. 2025 May 13;37(10):3842-3852. doi: 10.1021/acs.chemmater.5c00807. eCollection 2025 May 27.
3
Probing Biomolecular Interactions with Paramagnetic Nuclear Magnetic Resonance Spectroscopy.
Chembiochem. 2025 Mar 15;26(6):e202400903. doi: 10.1002/cbic.202400903. Epub 2025 Jan 13.
4
DNP-assisted solid-state NMR enables detection of proteins at nanomolar concentrations in fully protonated cellular milieu.
J Biomol NMR. 2024 Jun;78(2):95-108. doi: 10.1007/s10858-024-00436-9. Epub 2024 Mar 23.
5
Design Principles for the Development of Gd(III) Polarizing Agents for Magic Angle Spinning Dynamic Nuclear Polarization.
J Phys Chem C Nanomater Interfaces. 2022 Jul 14;126(27):11310-11317. doi: 10.1021/acs.jpcc.2c01721. Epub 2022 Jul 5.
6
Numerical recipes for faster MAS-DNP simulations.
J Magn Reson. 2021 Dec;333:107106. doi: 10.1016/j.jmr.2021.107106. Epub 2021 Nov 9.
7
TOAC spin-labeled peptides tailored for DNP-NMR studies in lipid membrane environments.
Biophys J. 2021 Oct 19;120(20):4501-4511. doi: 10.1016/j.bpj.2021.08.040. Epub 2021 Sep 2.
8
Targeted DNP for biomolecular solid-state NMR.
Chem Sci. 2021 Mar 23;12(18):6223-6237. doi: 10.1039/d0sc06959k.

本文引用的文献

1
Enabling Natural Abundance O Solid-State NMR by Direct Polarization from Paramagnetic Metal Ions.
J Phys Chem Lett. 2020 Jul 16;11(14):5439-5445. doi: 10.1021/acs.jpclett.0c01527. Epub 2020 Jun 25.
2
Macromolecular modeling and design in Rosetta: recent methods and frameworks.
Nat Methods. 2020 Jul;17(7):665-680. doi: 10.1038/s41592-020-0848-2. Epub 2020 Jun 1.
3
Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials.
J Phys Chem C Nanomater Interfaces. 2020 Apr 2;124(13):7082-7090. doi: 10.1021/acs.jpcc.0c00858. Epub 2020 Mar 6.
4
High-Field Dynamic Nuclear Polarization.
Annu Rev Phys Chem. 2020 Apr 20;71:143-170. doi: 10.1146/annurev-physchem-071119-040222. Epub 2020 Feb 19.
5
A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design.
J Am Chem Soc. 2019 Jun 5;141(22):8746-8751. doi: 10.1021/jacs.9b03723. Epub 2019 May 24.
7
Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery.
Angew Chem Int Ed Engl. 2019 May 27;58(22):7259-7262. doi: 10.1002/anie.201900139. Epub 2019 Apr 25.
8
F Dynamic Nuclear Polarization at Fast Magic Angle Spinning for NMR of HIV-1 Capsid Protein Assemblies.
J Am Chem Soc. 2019 Apr 10;141(14):5681-5691. doi: 10.1021/jacs.8b09216. Epub 2019 Apr 1.
9
Methyl dynamics in amino acids modulate heteronuclear cross relaxation in the solid state under MAS DNP.
Solid State Nucl Magn Reson. 2019 Jul;99:27-35. doi: 10.1016/j.ssnmr.2019.02.004. Epub 2019 Feb 26.
10
Time-optimized pulsed dynamic nuclear polarization.
Sci Adv. 2019 Jan 18;5(1):eaav6909. doi: 10.1126/sciadv.aav6909. eCollection 2019 Jan.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验