Suppr超能文献

生物合成微游泳者的建模与分析用于基于心肌细胞的驱动。

Modeling and analysis of bio-syncretic micro-swimmers for cardiomyocyte-based actuation.

机构信息

State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Science, Shenyang, 10016, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.

出版信息

Bioinspir Biomim. 2016 Aug 22;11(5):056006. doi: 10.1088/1748-3190/11/5/056006.

Abstract

Along with sensation and intelligence, actuation is one of the most important factors in the development of conventional robots. Many novel achievements have been made regarding bio-based actuators to solve the challenges of conventional actuation. However, few studies have focused on methods for controlling the movement performance of bio-syncretic robots by designing robotic structures and programming actuation bio-entities. In this paper, a theoretical model was derived considering kinematics and hydromechanics to describe the dynamics of a dolphin-shaped microstructure and to control the bio-syncretic swimmer movement by establishing the relationships between the swimming velocity of the bio-swimmer, the cell seeding concentration and the cell contractility. The proposed theoretical model was then verified with the fabricated biomimetic swimmer prototype actuated by equivalent external magnetism replacing the bio-entity force based on the study of living, beating cardiomyocyte contractility. This work can improve the development of bio-syncretic robots with an approach to preplanning the seeding concentration of cells for controlling the movement velocity of microstructures, and is also meaningful for biomimetic robots, medical treatments and interventional therapy applications.

摘要

除了感知和智能,驱动是常规机器人发展的最重要因素之一。为了解决常规驱动的挑战,人们在基于生物的驱动器方面取得了许多新的成果。然而,很少有研究关注通过设计机器人结构和编程驱动生物实体来控制生物合成机器人的运动性能的方法。在本文中,我们推导了一个考虑运动学和流体力学的理论模型,以描述海豚形微结构的动力学,并通过建立生物游泳者的游泳速度、细胞播种浓度和细胞收缩性之间的关系来控制生物合成游泳者的运动。然后,通过研究活的、跳动的心肌细胞收缩性,利用等效外部磁场驱动仿生游泳者原型来验证所提出的理论模型,替代基于生物实体力的驱动。这项工作可以通过预先规划细胞播种浓度来控制微结构的运动速度,从而提高生物合成机器人的发展水平,对于仿生机器人、医疗和介入治疗应用也具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验