Guix Maria, Mestre Rafael, Patiño Tania, De Corato Marco, Fuentes Judith, Zarpellon Giulia, Sánchez Samuel
Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Baldiri-Reixac 10-12, 08028 Barcelona, Spain.
Chemistry Department, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
Sci Robot. 2021 Apr 21;6(53). doi: 10.1126/scirobotics.abe7577.
Bioinspired hybrid soft robots that combine living and synthetic components are an emerging field in the development of advanced actuators and other robotic platforms (i.e., swimmers, crawlers, and walkers). The integration of biological components offers unique characteristics that artificial materials cannot precisely replicate, such as adaptability and response to external stimuli. Here, we present a skeletal muscle-based swimming biobot with a three-dimensional (3D)-printed serpentine spring skeleton that provides mechanical integrity and self-stimulation during the cell maturation process. The restoring force inherent to the spring system allows a dynamic skeleton compliance upon spontaneous muscle contraction, leading to a cyclic mechanical stimulation process that improves the muscle force output without external stimuli. Optimization of the 3D-printed skeletons is carried out by studying the geometrical stiffnesses of different designs via finite element analysis. Upon electrical actuation of the muscle tissue, two types of motion mechanisms are experimentally observed: directional swimming when the biobot is at the liquid-air interface and coasting motion when it is near the bottom surface. The integrated compliant skeleton provides both the mechanical self-stimulation and the required asymmetry for directional motion, displaying its maximum velocity at 5 hertz (800 micrometers per second, 3 body lengths per second). This skeletal muscle-based biohybrid swimmer attains speeds comparable with those of cardiac-based biohybrid robots and outperforms other muscle-based swimmers. The integration of serpentine-like structures in hybrid robotic systems allows self-stimulation processes that could lead to higher force outputs in current and future biomimetic robotic platforms.
结合生物和合成组件的受生物启发的混合软机器人是先进致动器和其他机器人平台(如游泳机器人、爬行机器人和步行机器人)开发中的一个新兴领域。生物组件的整合提供了人工材料无法精确复制的独特特性,如适应性和对外部刺激的反应。在此,我们展示了一种基于骨骼肌的游泳生物机器人,它具有三维(3D)打印的蛇形弹簧骨架,在细胞成熟过程中提供机械完整性和自我刺激。弹簧系统固有的恢复力允许在肌肉自发收缩时实现动态骨架顺应性,从而导致一个循环机械刺激过程,在没有外部刺激的情况下提高肌肉力量输出。通过有限元分析研究不同设计的几何刚度来对3D打印骨架进行优化。在对肌肉组织进行电驱动时,通过实验观察到两种运动机制:生物机器人在液 - 气界面时的定向游泳和靠近底面时的滑行运动。集成的柔顺骨架既提供机械自我刺激,又为定向运动提供所需的不对称性,其最大速度为5赫兹(每秒800微米,每秒3个身体长度)。这种基于骨骼肌的生物混合游泳机器人达到了与基于心脏的生物混合机器人相当的速度,并且优于其他基于肌肉的游泳机器人。在混合机器人系统中整合蛇形结构允许自我刺激过程,这可能会在当前和未来的仿生机器人平台中带来更高的力输出。