Suppr超能文献

利用基因编码电压指示剂对突触活动进行光遗传学监测。

Optogenetic Monitoring of Synaptic Activity with Genetically Encoded Voltage Indicators.

作者信息

Nakajima Ryuichi, Jung Arong, Yoon Bong-June, Baker Bradley J

机构信息

Center for Functional Connectomics, Korea Institute of Science and Technology Seongbuk-gu, Seoul, South Korea.

Center for Functional Connectomics, Korea Institute of Science and TechnologySeongbuk-gu, Seoul, South Korea; College of Life Sciences and Biotechnology, Korea UniversitySeongbuk-gu, Seoul, South Korea.

出版信息

Front Synaptic Neurosci. 2016 Aug 5;8:22. doi: 10.3389/fnsyn.2016.00022. eCollection 2016.

Abstract

The age of genetically encoded voltage indicators (GEVIs) has matured to the point that changes in membrane potential can now be observed optically in vivo. Improving the signal size and speed of these voltage sensors has been the primary driving forces during this maturation process. As a result, there is a wide range of probes using different voltage detecting mechanisms and fluorescent reporters. As the use of these probes transitions from optically reporting membrane potential in single, cultured cells to imaging populations of cells in slice and/or in vivo, a new challenge emerges-optically resolving the different types of neuronal activity. While improvements in speed and signal size are still needed, optimizing the voltage range and the subcellular expression (i.e., soma only) of the probe are becoming more important. In this review, we will examine the ability of recently developed probes to report synaptic activity in slice and in vivo. The voltage-sensing fluorescent protein (VSFP) family of voltage sensors, ArcLight, ASAP-1, and the rhodopsin family of probes are all good at reporting changes in membrane potential, but all have difficulty distinguishing subthreshold depolarizations from action potentials and detecting neuronal inhibition when imaging populations of cells. Finally, we will offer a few possible ways to improve the optical resolution of the various types of neuronal activities.

摘要

基因编码电压指示器(GEVIs)的时代已经成熟,如今可以在体内通过光学手段观察膜电位的变化。在这一成熟过程中,提高这些电压传感器的信号强度和速度一直是主要驱动力。因此,出现了各种各样使用不同电压检测机制和荧光报告基团的探针。随着这些探针的使用从在单个培养细胞中光学报告膜电位转变为对脑片和/或体内的细胞群体进行成像,一个新的挑战出现了——通过光学手段分辨不同类型的神经元活动。虽然仍然需要提高速度和信号强度,但优化探针的电压范围和亚细胞表达(即仅在胞体表达)变得更加重要。在这篇综述中,我们将研究最近开发的探针在脑片和体内报告突触活动的能力。电压传感荧光蛋白(VSFP)家族的电压传感器、ArcLight、ASAP - 1以及视紫红质家族的探针都擅长报告膜电位的变化,但在对细胞群体进行成像时,它们都难以区分阈下去极化和动作电位,也难以检测神经元抑制。最后,我们将提供一些可能的方法来提高对各种类型神经元活动的光学分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8db/4974255/4bfec41a8be1/fnsyn-08-00022-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验