Suppr超能文献

一种仅使用首发症状的时间和类型以及自身抗体来预测弥漫性皮肤系统性硬化症的简易规则:推导与验证

An easy prediction rule for diffuse cutaneous systemic sclerosis using only the timing and type of first symptoms and auto-antibodies: derivation and validation.

作者信息

van den Hombergh Wieneke M T, Carreira Patricia E, Knaapen-Hans Hanneke K A, van den Hoogen Frank H J, Fransen Jaap, Vonk Madelon C

机构信息

Department of Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands

Servicio de Reumatología, Hospital 12 de Octubre, Madrid, Spain.

出版信息

Rheumatology (Oxford). 2016 Nov;55(11):2023-2032. doi: 10.1093/rheumatology/kew305. Epub 2016 Aug 21.

Abstract

OBJECTIVE

DcSSc is associated with high morbidity related to widespread skin disease and poor prognosis due to earlier and more severe organ involvement. The objective of this study is to derive and validate a simple prediction rule for identifying patients at the time of initial diagnosis of SSc who are likely to progress to dcSSc.

METHODS

The Nijmegen cohort consists of 619 SSc patients. Logistic regression was used for predictive modelling. A prediction rule was created by rounding regression coefficients. Patients were stratified as being at low risk (<1) or high risk (⩾1) of progression to dcSSc. Performance was analysed in 445 SSc patients from Madrid.

RESULTS

One hundred and seventy-four out of 535 patients were classified as dcSSc. The final model consisted of gender, time between RP and non-RP, sclerodactyly (first non-Raynaud symptom) and SSc-specific auto-antibodies. The model performed well in the derivation cohort [area under the curve = 0.78 (95% CI: 0.74, 0.82)] and validation cohort [area under the curve  = 0.78 (95% CI: 0.74, 0.83)]. At the optimal cut point (1) for the prediction rule, sensitivity was 87% and specificity 61% in the derivation cohort, compared with 78% and 65% in the validation cohort. Upon application of the prediction rule to 392 lcSSc patients at initial diagnosis, 32 out of 34 patients were correctly classified as dcSSc.

CONCLUSION

A simple prediction rule was designed to attribute a low/high risk category for development of dcSSc.This method is suited for assigning intensified screening at the time of initial diagnosis of SSc to patients most at risk for dcSSc. It provides the opportunity for early identification of potential dcSSc patients for enrolment into clinical trials.

摘要

目的

弥漫性皮肤型系统性硬化症(dcSSc)与广泛皮肤疾病相关的高发病率以及因器官受累更早、更严重而导致的不良预后有关。本研究的目的是推导并验证一个简单的预测规则,用于在系统性硬化症(SSc)初诊时识别可能进展为dcSSc的患者。

方法

奈梅亨队列由619例SSc患者组成。采用逻辑回归进行预测建模。通过对回归系数进行四舍五入创建预测规则。将患者分层为进展为dcSSc的低风险(<1)或高风险(⩾1)。对来自马德里的445例SSc患者的表现进行分析。

结果

535例患者中有174例被分类为dcSSc。最终模型包括性别、雷诺现象(RP)与非RP之间的时间、指端硬化(首个非雷诺症状)和SSc特异性自身抗体。该模型在推导队列中表现良好[曲线下面积=0.78(95%置信区间:0.74,0.82)],在验证队列中[曲线下面积=0.78(95%置信区间:0.74,0.83)]。在预测规则的最佳切点(1)处,推导队列中的敏感性为87%,特异性为61%,而验证队列中分别为78%和65%。将预测规则应用于392例初诊时的局限性皮肤型系统性硬化症(lcSSc)患者,34例患者中有32例被正确分类为dcSSc。

结论

设计了一个简单的预测规则来确定dcSSc发生的低/高风险类别。该方法适用于在SSc初诊时对最有dcSSc风险的患者进行强化筛查。它为早期识别潜在的dcSSc患者以纳入临床试验提供了机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验