Suppr超能文献

用于光子计数计算机断层扫描的光谱先验图像约束压缩感知(光谱PICCS)

Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography.

作者信息

Yu Zhicong, Leng Shuai, Li Zhoubo, McCollough Cynthia H

机构信息

Department of Radiology, Mayo Clinic, Rochester, MN, USA.

出版信息

Phys Med Biol. 2016 Sep 21;61(18):6707-6732. doi: 10.1088/0031-9155/61/18/6707. Epub 2016 Aug 23.

Abstract

Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.

摘要

光子计数计算机断层扫描(PCCT)是一种新兴的成像技术,它能够通过单次扫描采集实现多能量成像。为了实现多能量成像,对应于完整X射线光谱的检测光子被分为几个箱数据子组,这些子组对应于更窄的能量窗口。因此,与全谱数据相比,每个能量箱中的噪声会增加。这项工作提出了一种迭代重建算法,用于抑制PCCT成像中使用的较窄能量箱中的噪声。该算法基于先验图像约束压缩感知(PICCS)框架,称为光谱PICCS;它使用通过传统滤波反投影重建的全谱图像作为先验图像。光谱PICCS算法使用具有自适应迭代步长的约束优化方案来实现,因此在大多数情况下只需要两个调谐参数。该算法首先通过计算机模拟进行评估,然后通过物理体模和使用研究型PCCT系统的体内猪研究进行验证。计算机模拟和实验研究结果均表明,在不牺牲CT值准确性或空间分辨率的情况下,窄能量箱中的图像噪声大幅降低(43-73%)。

相似文献

1
Spectral prior image constrained compressed sensing (spectral PICCS) for photon-counting computed tomography.
Phys Med Biol. 2016 Sep 21;61(18):6707-6732. doi: 10.1088/0031-9155/61/18/6707. Epub 2016 Aug 23.
2
Iterative reconstruction for photon-counting CT using prior image constrained total generalized variation.
Comput Biol Med. 2018 Dec 1;103:167-182. doi: 10.1016/j.compbiomed.2018.10.022. Epub 2018 Oct 22.
3
A neural network-based method for spectral distortion correction in photon counting x-ray CT.
Phys Med Biol. 2016 Aug 21;61(16):6132-53. doi: 10.1088/0031-9155/61/16/6132. Epub 2016 Jul 29.
4
Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR).
Phys Med Biol. 2016 Sep 21;61(18):6684-6706. doi: 10.1088/0031-9155/61/18/6684. Epub 2016 Aug 23.
8
10
Low-dose spectral CT reconstruction based on image-gradient L-norm and adaptive spectral PICCS.
Phys Med Biol. 2020 Dec 5;65(24):245005. doi: 10.1088/1361-6560/aba7cf.

引用本文的文献

1
Systematic Review on Learning-based Spectral CT.
IEEE Trans Radiat Plasma Med Sci. 2024 Feb;8(2):113-137. doi: 10.1109/trpms.2023.3314131. Epub 2023 Sep 12.
2
A Deep Learning Approach for Rapid and Generalizable Denoising of Photon-Counting Micro-CT Images.
Tomography. 2023 Jul 2;9(4):1286-1302. doi: 10.3390/tomography9040102.
3
Systematic Review on Learning-based Spectral CT.
ArXiv. 2024 Sep 25:arXiv:2304.07588v9.
4
Image-spectral decomposition extended-learning assisted by sparsity for multi-energy computed tomography reconstruction.
Quant Imaging Med Surg. 2023 Feb 1;13(2):610-630. doi: 10.21037/qims-22-235. Epub 2022 Dec 8.
5
Low-dose spectral reconstruction with global, local, and nonlocal priors based on subspace decomposition.
Quant Imaging Med Surg. 2023 Feb 1;13(2):889-911. doi: 10.21037/qims-22-647. Epub 2023 Jan 5.
6
Measurement of enhanced vasa vasorum density in a porcine carotid model using photon counting detector CT.
J Med Imaging (Bellingham). 2023 Jan;10(1):016001. doi: 10.1117/1.JMI.10.1.016001. Epub 2023 Feb 6.
7
Deep learning-based virtual noncalcium imaging in multiple myeloma using dual-energy CT.
Med Phys. 2022 Oct;49(10):6346-6358. doi: 10.1002/mp.15934. Epub 2022 Aug 28.
8
One-step iterative reconstruction approach based on eigentissue decomposition for spectral photon-counting computed tomography.
J Med Imaging (Bellingham). 2022 Jul;9(4):044003. doi: 10.1117/1.JMI.9.4.044003. Epub 2022 Jul 27.
9
Spectral Photon Counting CT: Imaging Algorithms and Performance Assessment.
IEEE Trans Radiat Plasma Med Sci. 2021 Jul;5(4):453-464. doi: 10.1109/trpms.2020.3007380. Epub 2020 Jul 7.
10
One half-scan dual-energy CT imaging using the Dual-domain Dual-way Estimated Network (DoDa-Net) model.
Quant Imaging Med Surg. 2022 Jan;12(1):653-674. doi: 10.21037/qims-21-441.

本文引用的文献

2
An algorithm for constrained one-step inversion of spectral CT data.
Phys Med Biol. 2016 May 21;61(10):3784-818. doi: 10.1088/0031-9155/61/10/3784. Epub 2016 Apr 15.
3
Evaluation of conventional imaging performance in a research whole-body CT system with a photon-counting detector array.
Phys Med Biol. 2016 Feb 21;61(4):1572-95. doi: 10.1088/0031-9155/61/4/1572. Epub 2016 Feb 2.
5
Dual energy CT with photon counting and dual source systems: comparative evaluation.
Phys Med Biol. 2015 Dec 7;60(23):8949-75. doi: 10.1088/0031-9155/60/23/8949. Epub 2015 Nov 5.
6
Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications.
Radiology. 2015 Sep;276(3):637-53. doi: 10.1148/radiol.2015142631.
7
Image-based Material Decomposition with a General Volume Constraint for Photon-Counting CT.
Proc SPIE Int Soc Opt Eng. 2015;9412. doi: 10.1117/12.2082069.
10
The effects of extending the spectral information acquired by a photon-counting detector for spectral CT.
Phys Med Biol. 2015 Feb 21;60(4):1583-600. doi: 10.1088/0031-9155/60/4/1583. Epub 2015 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验