Yu Zhicong, Leng Shuai, Li Zhoubo, McCollough Cynthia H
Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Phys Med Biol. 2016 Sep 21;61(18):6707-6732. doi: 10.1088/0031-9155/61/18/6707. Epub 2016 Aug 23.
Photon-counting computed tomography (PCCT) is an emerging imaging technique that enables multi-energy imaging with only a single scan acquisition. To enable multi-energy imaging, the detected photons corresponding to the full x-ray spectrum are divided into several subgroups of bin data that correspond to narrower energy windows. Consequently, noise in each energy bin increases compared to the full-spectrum data. This work proposes an iterative reconstruction algorithm for noise suppression in the narrower energy bins used in PCCT imaging. The algorithm is based on the framework of prior image constrained compressed sensing (PICCS) and is called spectral PICCS; it uses the full-spectrum image reconstructed using conventional filtered back-projection as the prior image. The spectral PICCS algorithm is implemented using a constrained optimization scheme with adaptive iterative step sizes such that only two tuning parameters are required in most cases. The algorithm was first evaluated using computer simulations, and then validated by both physical phantoms and in vivo swine studies using a research PCCT system. Results from both computer-simulation and experimental studies showed substantial image noise reduction in narrow energy bins (43-73%) without sacrificing CT number accuracy or spatial resolution.
光子计数计算机断层扫描(PCCT)是一种新兴的成像技术,它能够通过单次扫描采集实现多能量成像。为了实现多能量成像,对应于完整X射线光谱的检测光子被分为几个箱数据子组,这些子组对应于更窄的能量窗口。因此,与全谱数据相比,每个能量箱中的噪声会增加。这项工作提出了一种迭代重建算法,用于抑制PCCT成像中使用的较窄能量箱中的噪声。该算法基于先验图像约束压缩感知(PICCS)框架,称为光谱PICCS;它使用通过传统滤波反投影重建的全谱图像作为先验图像。光谱PICCS算法使用具有自适应迭代步长的约束优化方案来实现,因此在大多数情况下只需要两个调谐参数。该算法首先通过计算机模拟进行评估,然后通过物理体模和使用研究型PCCT系统的体内猪研究进行验证。计算机模拟和实验研究结果均表明,在不牺牲CT值准确性或空间分辨率的情况下,窄能量箱中的图像噪声大幅降低(43-73%)。